Towards room-temperature performance for lithium-polymer batteries

Towards room-temperature performance for lithium-polymer batteries

TitleTowards room-temperature performance for lithium-polymer batteries
Publication TypeJournal Article
Year of Publication2003
AuthorsJohn B Kerr, Gao Liu, Larry A Curtiss, Paul C Redfern
JournalElectrochimica Acta
Volume48
Pagination2305-2309
Date Published06/2003
Keywordsconductivity, electrolytes, lithium
Abstract

Recent work on molecular simulations of the mechanisms of lithium ion conductance has pointed towards two types of limiting process. One has involved the commonly cited segmental motion while the other is related to energy barriers in the solvation shell of polymeric ether oxygens around the lithium ions. Calculations of the barriers to lithium ion migration have provided important indicators as to the best design of the polymer. The theoretical work has coincided with and guided some recent developments on polymer synthesis for lithium batteries. Structural change of the polymer solvation shell has been pursued by the introduction of trimethylene oxide (TMO) units into the polymer. The conductivity measurements on polymers containing TMO unit are encouraging. The architecture of the polymer networks has been varied upon which the solvating groups are attached and significant improvements in sub-ambient performance are observed as a result. However, the above-ambient temperature performance appears controlled by an Arrhenius process that is not completely consistent with the theoretical calculations described here and may indicate the operation of a different mechanism. The new polymers possess significantly lower T-g values in the presence of lithium salts, which indicates weaker binding of the lithium ions by the polymers. These properties provide considerable improvement in the transport properties close to the electrode surfaces resulting in decreased impedances at the surfaces both at lithium metal and in composite electrodes. The greater flexibility of the solvation groups combined with appropriate architecture not only has applications in lithium metal-polymer batteries but also in lithium ion liquid and gel systems as well as in fuel cell electrodes.