Nitrogen-doped carbon coated SnO2 nanoparticles embedded in a hierarchical porous carbon framework for high-performance lithium-ion battery anodes

Nitrogen-doped carbon coated SnO2 nanoparticles embedded in a hierarchical porous carbon framework for high-performance lithium-ion battery anodes

TitleNitrogen-doped carbon coated SnO2 nanoparticles embedded in a hierarchical porous carbon framework for high-performance lithium-ion battery anodes
Publication TypeJournal Article
Year of Publication2019
AuthorsYe Hong, Wenfeng Mao, Qianqian Hu, Shiyong Chang, Dejun Li, Jingbo Zhang, Gao Liu, Guo Ai
JournalJournal of Power Sources
Volume428
Pagination44 - 52
Date Published07/2019
ISSN03787753
Abstract

SnO2 is one of the promising anode materials for the next-generation lithium-ion batteries due to its high theoretical capacity. The main challenges of SnO2 include large volume change during cycling, partially reversibility between SnO2 and Sn, and unstable solid-electrolyte interphase. Herein, we demonstrate a novel structure design of SnO2-based anode, in which SnO2 nanoparticles are embedded in a hierarchical porous carbon framework and further coated by the uniform Nitrogen-doped carbon layer. The hierarchical porous carbon framework can provide void space for the SnO2 expansion, while the Nitrogen-doped carbon coating can act as a buffer layer to reduce the amount of irreversible solid-electrolyte interphase. This peculiar structure can also build highly conductive network, and promote the reversible conversion from Sn to SnO2 by preventing the agglomeration of the intermediate Sn product. Therefore, the obtained [email protected]@NC composite exhibits remarkable electrochemical performance with a high specific capacity of 1100 mAh g−1 after 100 cycles at 0.1 A g−1 and superior long-term stability over 500 cycles at 1 A g−1.

DOI10.1016/j.jpowsour.2019.04.093
Short TitleJournal of Power Sources
Refereed DesignationRefereed