A strain-driven morphotropic phase boundary in bifeO3
Publication Type
Journal Article
Authors
Zeches, R.J, M.D Rossell, J.X Zhang, A.J Hatt, Q He, C.-H Yang, A Kumar, C.H Wang, A Melville, C Adamo, G Sheng, Y.-H Chu, J.F Ihlefeld, R Erni, C Ederer, V Gopalan, L.Q Chen, D.G Schldin, N.A Spaldin, L.W Martin, Ramamoorthy Ramesh
DOI
Abstract
Piezoelectric materials, which convert mechanical to electrical energy and vice versa, are typically characterized by the intimate coexistence of two phases across a morphotropic phase boundary. Electrically switching one to the other yields large electromechanical coupling coefficients. Driven by global environmental concerns, there is currently a strong push to discover practical lead-free piezoelectrics for device engineering. Using a combination of epitaxial growth techniques in conjunction with theoretical approaches, we show the formation of a morphotropic phase boundary through epitaxial constraint in lead-free piezoelectric bismuth ferrite (BiFeO3) films. Electric field-dependent studies show that a tetragonal-like phase can be reversibly converted into a rhombohedral-like phase, accompanied by measurable displacements of the surface, making this new lead-free system of interest for probe-based data storage and actuator applications.
Journal
Science
Volume
326
Year of Publication
2009
ISSN
00368075
Notes
cited By 780