Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting

Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting

TitleLife-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting
Publication TypeJournal Article
Year of Publication2014
AuthorsRoger Sathre, Corinne Scown, William R Morrow, III, John C Stevens, Ian D Sharp, Joel W Ager, III, Karl Walczak, Frances A Houle, Jeffery B Greenblatt
JournalEnergy Environ. Sci.
Volume7
Issue10
Pagination3264 - 3278
Date Published06/2014
ISSN1754-5692
Abstract

Here we report a prospective life-cycle net energy assessment of a hypothetical large-scale photoelectrochemical (PEC) hydrogen production facility with energy output equivalent to 1 GW continuous annual average (1 GW HHV = 610 metric tons of H2 per day). We determine essential mass and energy flows based on fundamental principles, and use heuristic methods to conduct a preliminary engineering design of the facility. We then develop and apply a parametric model describing system-wide energy flows associated with the production, utilization, and decommissioning of the facility. Based on these flows, we calculate and interpret life-cycle net energy metrics for the facility. We find that under base-case conditions the energy payback time is 8.1 years, the energy return on energy invested (EROEI) is 1.7, and the life-cycle primary energy balance over the 40 years projected service life of the facility is +500 PJ. The most important model parameters affecting the net energy metrics are the solar-to-hydrogen (STH) conversion efficiency and the life span of the PEC cells; parameters associated with the balance of systems (BOS), including construction and operation of the liquid and gas handling infrastructure, play a much smaller role.

DOI10.1039/C4EE01019A
Short TitleEnergy Environ. Sci.