Laser ablation molecular isotopic spectrometry of water for 1D2/1H1 ratio analysis

Laser ablation molecular isotopic spectrometry of water for 1D2/1H1 ratio analysis

TitleLaser ablation molecular isotopic spectrometry of water for 1D2/1H1 ratio analysis
Publication TypeJournal Article
Year of Publication2013
AuthorsArnab Sarkar, Xianglei Mao, George CY Chan, Richard E Russo
JournalSpectrochimica Acta Part B: Atomic Spectroscopy
Volume88
46
Pagination46-53
Date Published10/2013
KeywordsDeuterium, Hydrogen, LAMIS, libs, PLSR
Abstract

Laser Ablation Molecular Isotopic Spectrometry (LAMIS) has been investigated for optical isotopic analysis of the deuterium to protium ratio in enriched water samples in ambient air at atmospheric pressure. Multivariate PLSR (Partial Least Squares Regression) based calibrations were carried out and validated using multiple statistical parameters. Comparisons of results are reported using two spectrometers having two orders of magnitude difference in spectral resolution. The accuracy and precision of isotopic analysis depends on the spectral resolution and the inherent isotope shift of the elements. The requirements for spectral resolution of the measurement system can be significantly relaxed when the isotopic abundance ratio is determined using chemometric processing of the spectra. Large isotopic shifts in the individual rotational branches of OH/OD molecular emission spectra were measured. Optimized temporal conditions for LAMIS measurements were established. Several sub-regions of spectra were used for PLSR calibration and the results demonstrate that both the emission intensity and degree of spectral differentiation affect the quality of the PLSR calibration. LAMIS results also were compared with traditional LIBS results obtained using PLSR and a spectral deconvolution method, demonstrating the advantages of LAMIS over LIBS with respect to isotopic composition determination.

DOI10.1016/j.sab.2013.08.002