Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles

TitleDiagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles
Publication TypeJournal Article
Year of Publication2001
AuthorsX. Zhang, Philip N Ross, Robert Kostecki, Fanping Kong, Steven E Sloop, John B Kerr, Kathryn A Striebel, Elton J Cairns, Frank R McLarnon
JournalJournal of The Electrochemical Society
Volume148
Issue5
PaginationA463-A470
Date Published05/2001
ISSN00134651
Keywordsatomic force microscopy, chromatography, corrosion, dissociation, electric impedance, electric vehicles, electrochemical analysis, electrochemical electrodes, life testing, lithium, optical microscopy, phase separation, Raman spectra, scanning electron microscopy, secondary cells, solid electrolytes, voltammetry (chemical analysis)
Abstract

A baseline cell chemistry was identified as a carbon anode, LiNi0.8Co0.2 O2 cathode, and diethyl carbonate-ethylene carbonate LiPF6 electrolyte, and designed for high power applications. Nine 18650-size advanced technology development cells were tested under a variety of conditions. Selected diagnostic techniques such as synchrotron infrared microscopy, Raman spectroscopy, scanning electronic microscopy, atomic force microscopy, gas chromatography, etc., were used to characterize the anode, cathode, current collectors and electrolyte taken from these cells. The diagnostic results suggest that the four factors that contribute to the cell power loss are solid electrolyte interphase deterioration and nonuniformity on the anode; morphology changes, increase of impedance, and phase separation on the cathode; pitting corrosion on the cathode current collector; and decomposition of the LiPF6 salt in the electrolyte at elevated temperature.

DOI10.1149/1.1362541
Short TitleJ. Electrochem. Soc.