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Billion kWh

Data Center ability for Frequency Control

US Data Center Electricity Consumption
Data Center
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United States Data Center Energy Usage Report,
Lawrence Berkeley National Laboratory, 2016.

[ Large potential for Frequency Control ]




Cloud Computing is Interdependent
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The need for Distribution in Primary FC

Issues with Centralized Control Primary Frequency Control
Communication Privacy Speed
Infeasible for large Agents don’t want + Requires frequency
networks to share private stabilization in seconds
objectives

|

Distributed Control for PFC

Optimal Decentralized Primary Frequency Control in Power Networks
C.Zhao and S. Low - CDC 2014

Assumes Independent Costs = Separable Objective Function (valid for some applications)

Cloud Computing Costs are Interdependent = Inseparable Objective Function




Goal: Design Primary FC that uses a Network of Data Centers

Approach: Incorporate Interdependent Costs

Frequency Load Controller at Data Center j
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Cloud Computing Model

Data Center Excess Processing Rate
Workload Incoming Rate Processing Rates of the Network
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Power Network Model

Non-controllable loads

|
Bus s I?eal. Pij=plj —Dij wlj —dly /
Power Injection —

Controllable loads (Data Center)

Frequency-sensitive

Voltage phase angle (w.r.t. nominal 6.0)
Frequency wl/'=dt9¢/'%
Deviation

Maximum power flow across line (4)e&
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Flows



System Dynamics Model

] ] Mljdwl) /dt =plj—Dij wlj—dlj—Flj (@)
Swing Equation

Physical Inertia

Equilibrium dewtjlx /ar=0 .
O+ wlx Pl dlx s) ~ (no change in frequency)

aPljT /dt =0 . -
(no change in power injection)

wyjT*=w  (3ll buses at same frequency)



Geographic Frequency Control Problem

Minimize

s,d,w




Goal: Design Primary FC that uses a Network of Data Centers

Approach: Incorporate Interdependent Costs

Frequency Load Controller at Data Center j
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Distributed Control Laws

Frequency Load Controller at Data Center s
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Control Laws Converge to an Optimal Point

Stability

Theorem: The trajectory of (w.2.ds) asymptotically converges to an
equilibrium point (@, Pt ,dfx sl ul* ).

Optimality

Theorem: An equilibrium point (w7, Pt« ,d+ ,s7 uf+ ) is optimal to the
Geographic Frequency Control Problem.




Goal: Design Primary FC that uses a Network of Data Centers

Approach: Incorporate Interdependent Costs

Frequency Load Controller at Data Center j
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Simulation Setup
New England IEEE 39-bus Power System Toolbox (Matlab)

O =25 MW Data Center
Each with different efficiency

10 Data Centers = 1.8% Total Demand

Each Data Center shares a fraction of
a 100 MW equivalent computational

workload.

Interdependent cost:  g(s)=ys12

A = Disturbance of 50 MW Drop in Power

http://icseg.iti.illinois.edu/ieee-39-bus-system/



Proposed Control Laws Stabilize the System

Converges to equilibrium within 30 seconds
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Cost of Proposed Control Laws is near Optimal

Costs

B = Interdependent
B =Independent

100

| I I I
0

OLC Proposed Optimal

Total cost (S/sec)

Proposed incorporates Interdependent costs, whereas OLC does not.



Goal: Design Primary FC that uses a Network of Data Centers

Approach: Incorporate Interdependent Costs

Asymptotically Converges to an

Converges toward Equilibrium that is
Optimal Cost near Optimal Cost

Distributed Control Laws Simulation Results

Bonus: Communication and implementation Delay

20



Distributed Control Laws

Frequency Load Controller at Data Center s
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System with delay

Equilibrium
(0T« ,wT* ,PT* ,dT+ ,s)

' dwljT /dt =0
v/ (no change in frequency)

adPljTx /dt =0 .
(no change in power injection)

wljTx =w

(all buses at same frequency)

And hold for at least A of time

Corollary: An equilibrium point (
wTx, PTx dfs sTx .7+ ) is optimal to
the Geographic Frequency Control
Problem.

Stability: if gis small enough, the

trajectory asymptotically
approaches an equilibrium point.
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Future work

Include other geographic interdependent systems,
e.g. thermal grids, electric mass transit, natural gas.




Research examples

* Distributed Optimization
* Geographical Load Balancing + Distributed Frequency Control
 Demand Response Program Design

* Online Optimization
* Smoothed Online Convex Optimization
* Coincident Peak Pricing, Multi-scale electricity markets

* Big Data Systems
* Multi-resource allocation
* Bounded Priority Fairness, Interchangeable Resource Allocation



Solar + Wind energy outpaces DR adoption

California
>
14
@
kP
(@)
g 10
g
<
8 6
© . . . .
2 = / California State Legislature solution (2013):
)
s ® 1,325 MW of grid storage by 2020
a- 0
2003 2005 2007 2009 2011 2013 Expensive
== Solar+Wind CAISO DR

http://energyalmanac.ca.gov/electricity/electric_generation_capacity.html
FERC Assessment of Demand Response and Advanced Metering Staff Reports: 2010-2015.
CAISO Demand Response Barriers Study 20009. 26



DR programs allocate customer uncertainties

Because DR Programs have various Levels of Commitment

Customer Load Reductions

Customer s LSE is
responsible responsible
Mandatory Voluntary

Base Interruptible Program (BIP) <——— CAISO — Demand Bidding Program (DBP)
Emergency Response Service (ERS) «—— ERCOT —>Voluntary Load Reduction (VLR)
Special Case Resources (SCR) <+ NYISO — Emergency DR Program (EDRP)

27



Customer uncertainties
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ﬁ ° .h MA Mhl N’_L
0> """"'O;"" DY — Mandatory DR to
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2l vm,_,_hJ\l\ .
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UMass Trace Repository: Smart* Data Set 28



Challenges in handling customer uncertainties

LSE does not know each of the customer’s uncertainties.

DR programs that have customers take some
responsibility are mandatory.



Goal: Increase reliable DR adoption

Approach: Incorporate Customer Uncertainties

- (m, 4, ) ——— (@ Bu7) (13, Ay 1)

\(“2"32%) (102, Ao Hz) +—
(@ B 70 (e Ap ) <

Distributed Algorithm Leverage
Randomness



Linear contract
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Customer cost functions raise challenges

Accuracy: LSE does not know their cost functions

Privacy: Customers do not want to give up their information



Distributed Algorithm

(mA.4) G (41,541, 141) [ Customer 1 ](ﬂu AL i)

\ (@2 12 ,yi2) [ Customer 2 ](ﬂ'lz A2 112 )

Subgradient Method

(adi i, yli) [ Customer ] (rdi ALl udi)
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Distributed Algorithm converges to Centralized

Theorem: The distributed algorithm’s trajectory of prices
converges to the optimal centralized prices.

0.004 T T T T

: 1 : : : all Customer 1
_ ’\ 0.002 |
=== Dist | —
Cent szadz - 7 0 .
- 2 4 6 8 10
06F - 0.004 T T T T
al2 Customer 2
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0.2 = LSE |- 0 .
Cent 2 4 6 8 10
1 1 1 0 1 1 f 1 0.004 T T T T
4 6 8 10 ) 4 6 8 10 ad3
iteration, k iteration, k 0.002 Customer 3
0 [
2 4 6 8 10
iteration, k

(£, ylemain at O for centralized and distributed solutions)
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Linear contract drawback: It is mandatory.

1.2 T T T T 2 T T T T

o
&
1

Demand Response
Social Cost

2T 1 Required compliance
01 o2 03 os 01 o2 o3 oa during high customer

Customer cost uncertainty Customer cost uncertainty cost periods

) - Ex. Important tasks that
Customer [ \ need to be completed
cost ——

time 35



Aim to avoid high customer cost periods

Level of Commitment

0 LIN+(” ) 1

Customer commits to , fraction < |IN
of timeslots to follow LIN

Commitment decision Ex.

based only on realized Quadratic
cost function Cli (xdi)=alixiiT2  Customer only knows ai; before

deciding to commit to DR



LIN+,, reduces cost further than LIN only

Cli (i (0);)=ali (&) (xdi (6))T2

2900
RSD(a) = 0.05 |

& 2800 RSD(a) = 0.56 Decrease from =1
2 2700 | ] —>avoids high customer costs
g 2600 \ / ' Further decrease of
S 2500 - —larger mismatch for LSE
E

2400 | .

Larger customer cost uncertainty
2300 ' ' ' :
0 0.2 0.4 0.6 0.8 1 2 ®»)

g LIN

Level of Commitment

37



Goal: Increase reliable DR adoption

Approach: Incorporate Customer Uncertainties

Converges to Lower Social Cost

centralized solution closer to Offline
Optimal

Distributed Algorithm Leverage
Randomness

38



Future work:

Incorporate power
network constraints

Ex. Line constraints

Congested lines
—>Necessary to control local
mismatches s locally (with )



Research examples

* Distributed Optimization
* Geographical Load Balancing + Distributed Frequency Control
 Demand Response Program Design

* Online Optimization
* Smoothed Online Convex Optimization
* Coincident Peak Pricing, Multi-scale electricity markets

* Big Data Systems
* Multi-resource allocation
* Bounded Priority Fairness, Interchangeable Resource Allocation



Artificial Intelligence

J ||||III1f.||IIr

lﬁﬁ%ﬂuv.u-...ﬁ

Autonomous Vehicles ¢ r==

Robotics -/\

Smart Grid

1. Real-time decisions

2. Changing environment
3. Switching Costs

4. Utilize past information

Continual Learning

Stoica, et al. (2017)




Example: Dynamic Capacity Provisioning

Data Center Operating Cost + Switching Cost
Demand h(xdt ylt) Lllxdt —xlt—1 ||
it

How many servers should be
turned on/off right now?

) N Yy
1/ /Y
/A

xit = # servers on

. Goal: Design an Online Algorithm
Future demand predicted at ¢ th Perf G
L2l bt with Performance Guarantees.

42



1-Dimensional Multi-Dimensional

gum—

Lin, et al. (2011): 3-competitive IGCC12: 1+Q (1 )-competitive Receding
Lazy Capacity Provisioning Horizon Control
1.-S'Fep Bansal, et al. (2015): 3-competitive
Prediction IGCC12: 1+0(1/w )-competitive Averaging

Memoryless . _
Fixed Horizon Control

Bansal, et al. (2015): 2-competitive

- w
IGCC12: 1+0(1 /w )-competitive Receding f_ﬁ.l
Horizon Control OF -~ Fab |
FHC L1 |5 i
RHC i |
w 1 ST
FHC ==
o
| | ] I
= I = |
] : ] :
— A
FHC™” Lol
e
AFHC

Competitive Ragi@-{ie,y id¢,..y 471t Je=11T Deost(A==,~—coer=
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RHC vs AFHC
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FHC with limited commitment v

Level of Commitment, »

Use v~ of the calculated actions before using new predictions.

1. Every <Wwrounds, receive the predictions y JZ|Z,....y dt| t+w—1

2. Solvemin—xdZ,..xdt+w—1 L) =tTt+w—1# [c(xir,ylt|t)
+[[xit—xir—1 [[]

I 1 __ 41 r . - aa

3. Impl txdt,...x '
mplemen v (W-v)




Committed Horizon Control

Average the decisions between a set of different » FHC algorithms.

1. Run ZFHC algorithms with limited commitment 77, each starting at a different round.

2. Use FHCK to determine xd2T(4) ,...xdt+v—1T( k)

3. Implement xdt=1/v )k =0Tv—1&xit 0 ,_A_V .. (Wv)
FHC"(v,w) ST
FHC(I)(V,W)
FHC""(v,w)
CHC




CHC generalizes RHC and AFHC (Sigmetrics16)

)

FHC

FHC (v,w)

/ FHC"(vw)
(v-1)

A%

(V,w)

~~~~~~~~~~

______

N

AFHC (=)

______
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Average-case Analysis

Theorem: Let [//J/4 [/ be a measure of the prediction
error for & steps into the future, then

e e,
Optimal zdepends on how [/fl/k [| grows with &

48



Different properties give different optimal v

lllustration of Theorem =

ot |=— D=5,G=0.3, co=3, a=0.9
- = = D=3,G=0.1,¢co=2, a=0.1
----- D=1, G=1.0, co=1, a=0.7

a-Holder continuity
|c(eyd1 )—c(epd2 )| Gyl —pd2 [[i2Ta

10

White noise variance

trace(Cov(e))=0oT2

Range limiting correlation error

Competitive Difference

L/ (IF=c, L=s>0
L/ IF=0, s>L o =1

(RHC)

commitment level, v 4o



