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Research examples 

• Distributed	Optimization	
•  Geographical	Load	Balancing	+	Distributed	Frequency	Control	
•  Demand	Response	Program	Design	

• Online	Optimization	
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Data	Center	ability	for	Frequency	Control	
US	Data	Center	Electricity	Consumption	

United	States	Data	Center	Energy	Usage	Report,	
Lawrence	Berkeley	National	Laboratory,	2016.	
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Fast	&	Precise	Energy	Control	Systems	

E.g.	Dynamic	Frequency	Scaling	of	CPUs	
								Energy	Storage	within	UPSs	

Large	potential	for	Frequency	Control	



Cloud	Computing	is	Interdependent	

Power	Network	

Shared	Computation	
Workload	

Delayed	or	Unprocessed	
Workload	

Shared	Cost	

Power	Consumption	
Decisions	are	Dependent	



Requires	frequency	
stabilization	in	seconds	

Communication	 Speed	Privacy	
Infeasible	for	large	

networks	
Agents	don’t	want	
to	share	private	

objectives	

Issues	with	Centralized	Control	 Primary	Frequency	Control	

Distributed	Control	for	PFC	
Optimal	Decentralized	Primary	Frequency	Control	in	Power	Networks	

C.	Zhao	and	S.	Low	-	CDC	2014	

Assumes	Independent	Costs	à	Separable	Objective	Function	(valid	for	some	applications)	

Cloud	Computing	Costs	are	Interdependent	à	Inseparable	Objective	Function	

The	need	for	Distribution	in	Primary	FC	

+	
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Goal:	Design	Primary	FC	that	uses	a	Network	of	Data	Centers	

Approach:	Incorporate	Interdependent	Costs	

Distributed	Control	Laws	 Simulation	Results	



Cloud	Computing	Model	

Workload	Incoming	Rate	

𝑊		

Data	Center	
Processing	Rates	

​𝑟↓1 	

Excess	Processing	Rate	
of	the	Network	
𝑠≔∑𝑗↑▒​𝑟↓𝑗  −𝑊	

𝑠<0	

Workload	
unprocessed	or	delayed	

​𝑟↓2 	

𝑔(𝑠)	

Network-wide	
(Interdependent)	Cost	

Single	Data	Center	
Power	Consumption	
​𝑑↓𝑗 ≔ ​​𝑑 ↓𝑗 + ​1/​𝑎↓𝑗  ​𝑟↓𝑗 	

Linear	power	usage	profile:	
	 ​​𝑑 ↓𝑗 	constant	overhead	
	 ​𝑎↓𝑗 	conversion	coefficient	

Cost	to	convert	
electrical	à	computing	

power	

​𝑐↓𝑗 ( ​𝑑↓𝑗 )	

Load	
Balancer	



Power	Network	Model	

Bus	𝒋	Real	
Power	Injection	

​𝑃↓𝑗 ≔ ​𝑝↓𝑗 − ​𝐷↓𝑗 ​𝜔↓𝑗 − ​𝑑↓𝑗 	

Non-controllable	loads	
Controllable	loads	(Data	Center)	

Frequency-sensitive	

Frequency	
Deviation	

​𝜔↓𝑗 = ​𝑑​𝜃↓𝑗 /𝑑𝑡 	

Voltage	phase	angle	(w.r.t.	nominal	 ​𝜃↓0 )	

Real	Power	
Flows	

​𝐹↓𝑗 (𝜽)≔∑𝑘:(𝑗,𝑘)𝜖𝐸↑▒​𝑌↓𝑗𝑘 ​sin�(​𝜃↓𝑗 − ​𝜃↓𝑘 )  −∑𝑖:(𝑖,𝑗)𝜖𝐸↑▒​𝑌↓𝑖𝑗 ​sin�(​𝜃↓𝑖 − ​𝜃↓𝑗 )  	
Maximum	power	flow	across	line	(𝑗,𝑘)𝜖𝐸				



System	Dynamics	Model	

Swing	Equation	
​𝑀↓𝑗 ​𝑑​𝜔↓𝑗 /𝑑𝑡 = ​𝑝↓𝑗 − ​𝐷↓𝑗 ​𝜔↓𝑗 − ​𝑑↓𝑗 − ​𝐹↓𝑗 (𝜽)	

Physical	Inertia	

Equilibrium	
(​𝜽↑∗ , ​𝝎↑∗ , ​𝑷↑∗ , ​𝒅↑∗ ,𝑠)	

​𝑑​𝜔↓𝑗↑∗ /𝑑𝑡 =0	

​𝑑​𝑃↓𝑗↑∗ /𝑑𝑡 =0	

​𝜔↓𝑗↑∗ =𝜔	

∀𝑗:	 (no	change	in	frequency)	

(no	change	in	power	injection)	

(all	buses	at	same	frequency)	



Geographic	Frequency	Control	Problem	

Minimize	 Cost	of	PFC	to	Data	Centers	 Cost	of	Frequency	Deviations	+	
𝑠,𝒅,𝝎	 𝑔(𝑠)+∑𝑗↑▒​𝑐↓𝑗 (​𝑑↓𝑗 ) 	 ∑𝑗↑▒​​𝐷↓𝑗 /2 ​𝜔↓𝑗↑2  	

Computational	Processing	Power	Balance	
s.t.	

Electrical	Power	Network	Balance	

𝑠=∑𝑗↑▒​𝑎↓𝑗 ​𝑑↓𝑗  −𝑊−∑𝑗↑▒​𝑎↓𝑗 ​​𝑑 ↓𝑗  	

0=∑𝑗↑▒(​𝑝↓𝑗 − ​𝐷↓𝑗 ​𝜔↓𝑗 − ​𝑑↓𝑗 ) 	
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Goal:	Design	Primary	FC	that	uses	a	Network	of	Data	Centers	

Approach:	Incorporate	Interdependent	Costs	

Distributed	Control	Laws	 Simulation	Results	



Distributed	Control	Laws	

𝜇(𝑡)= 𝜇(0)+ 𝛽∫0↑𝑡▒(𝑠(𝜏)− ​(𝑔′)↑−1 (𝜇(𝜏)))𝑑𝜏 	

​𝑑↓𝑗 (𝑡)= ​[​(​𝑐↓𝑗 ′)↑−1 (​𝜔↓𝑗 (𝑡)− ​𝑎↓𝑗 𝜇(𝑡))]↓​​𝑑 ↓𝑗 ↑​¯𝑑 ↓𝑗  	
Power	Network	

Frequency	
Deviation	 ​𝜔↓𝑗 	

Load	Controller	at	Data	Center	𝒋		

Load	 ​𝑑↓𝑗 	

Workload	
Balancer	

Processing	
Rate	​𝑟↓𝑗 	

Workload	𝑊		

Supply/Demand	
Disturbance	

Excess	Rate	𝑠		
Workload	Balancer	Signal	Controller	

Control	Signal	𝜇		



Control	Laws	Converge	to	an	Optimal	Point	

Theorem:		The	trajectory	of	(𝝎,𝑷,𝒅,𝑠,𝜇)	asymptotically	converges	to	an	
equilibrium	point	(​𝝎↑∗ , ​𝑷↑∗ , ​𝒅↑∗ , ​𝑠↑∗ , ​𝜇↑∗ ).	

Theorem:		An	equilibrium	point	(​𝝎↑∗ , ​𝑷↑∗ , ​𝒅↑∗ , ​𝑠↑∗ , ​𝜇↑∗ )	is	optimal	to	the	
Geographic	Frequency	Control	Problem.	

Stability	

Optimality	
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Goal:	Design	Primary	FC	that	uses	a	Network	of	Data	Centers	

Approach:	Incorporate	Interdependent	Costs	

Distributed	Control	Laws	 Simulation	Results	



Simulation	Setup	
New	England	IEEE	39-bus	

=	25	MW	Data	Center		

=	Disturbance	of	50	MW	Drop	in	Power		

10	Data	Centers	=	1.8%	Total	Demand	

Power	System	Toolbox	(Matlab)	

Each	Data	Center	shares	a	fraction	of	
a	100	MW	equivalent	computational	
workload.	

Interdependent	cost:			𝑔(𝑠)=𝛾​𝑠↑2 	

Each	with	different	efficiency	

http://icseg.iti.illinois.edu/ieee-39-bus-system/	



Proposed	Control	Laws	Stabilize	the	System	
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OLC	(No	Interdependent	Costs)	
Optimal	Decentralized	Primary	Frequency	Control	in	Power	Networks	

C.	Zhao	and	S.	Low	-	CDC	2014	

Disturbance	of	50	MW	Drop	in	Power		
Data	Center	Demand	Change	

Converges	to	equilibrium	within	30	seconds	

Most	efficient	Data	Center	



Cost	of	Proposed	Control	Laws	is	near	Optimal	
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Costs	
=	Interdependent	
=	Independent	

Proposed	incorporates	Interdependent	costs,	whereas	OLC	does	not.		



20	

Goal:	Design	Primary	FC	that	uses	a	Network	of	Data	Centers	

Approach:	Incorporate	Interdependent	Costs	

Distributed	Control	Laws	 Simulation	Results	

Asymptotically	
Converges	toward	

Optimal	Cost	

Converges	to	an	
Equilibrium	that	is	
near	Optimal	Cost	

Bonus:	Communication	and	implementation	Delay	



Distributed	Control	Laws	

𝜇(𝑡)= 𝜇(0)+ 𝛽∫0↑𝑡▒(𝑠(𝜏)− ​(𝑔′)↑−1 (𝜇(𝜏)))𝑑𝜏 	

​𝑑↓𝑗 (𝑡)= ​[​(​𝑐↓𝑗 ′)↑−1 (​𝜔↓𝑗 (𝑡)− ​𝑎↓𝑗 𝜇(𝑡))]↓​​𝑑 ↓𝑗 ↑​¯𝑑 ↓𝑗  	
Power	Network	

Frequency	
Deviation	 ​𝜔↓𝑗 	

Load	Controller	at	Data	Center	𝒋		

Load	 ​𝑑↓𝑗 	

Workload	
Balancer	

Processing	
Rate	​𝑟↓𝑗 	

Workload	𝑊		

Supply/Demand	
Disturbance	

Excess	Rate	𝑠		
Workload	Balancer	Signal	Controller	

Control	Signal	𝜇		

Outdated	𝜇(𝑡-𝚫)	)	



System	with	delay	

Equilibrium	
(​𝜽↑∗ , ​𝝎↑∗ , ​𝑷↑∗ , ​𝒅↑∗ ,𝑠)	

​𝑑​𝜔↓𝑗↑∗ /𝑑𝑡 =0	

​𝑑​𝑃↓𝑗↑∗ /𝑑𝑡 =0	

​𝜔↓𝑗↑∗ =𝜔	

∀𝑗:	 (no	change	in	frequency)	

(no	change	in	power	injection)	

(all	buses	at	same	frequency)	

And	hold	for	at	least	𝚫	of	time		of	time	

Stability:		if	𝛽	is	small	enough,	the	
trajectory	asymptotically	
approaches	an	equilibrium	point.	

Corollary:		An	equilibrium	point	(​
𝝎↑∗ , ​𝑷↑∗ , ​𝒅↑∗ , ​𝑠↑∗ , ​𝜇↑∗ )	is	optimal	to	
the	Geographic	Frequency	Control	
Problem.	
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Fig. 4. Trajectories of the system state variables: (a) Bus frequencies for each of the ten buses containing a datacenter under the three different control
schemes; (b) changes in load for each of the ten datacenters under the proposed control; (c) Total cost changes under OLC and the proposed control.
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Fig. 5. (a) Total equilibrium cost separated by independent and interdependent costs of OLC, the proposed control, and the lower bound. For each datacenter
(b) and (c) give the independent costs and equilibrium load deviations respectively under OLC and the proposed control. Note: The datacenters are numbered
in decreasing order of efficiency aj .
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Fig. 6. Sensitivity analysis in terms of cost savings by using the proposed control instead of OLC for: (a) Interdependent cost coefficient; (b) Demand
flexibility. Stability analysis with the presence of (c) Communication delay and PFC updating every 0.1 second.

The results presented in this paper open up four distinct
future research directions. The first is to explore how other
interdependent systems (e.g. electric mass transit, thermal
grids) can be used to help increase the reliability of the grid.
The second is to investigate how a network of datacenters
that are located in multiple disjoint power grids can utilize
their interconnectedness to enhance the reliability in those
grids. The third is to separate the computational workload
into different resource demands, each with a different inter-
dependent cost and computational efficiency. The fourth is to
apply the distributed control laws to a system with a higher-
order transient stability model. For our future work, we plan to
extend the proposed control laws to take into account further
network effects such as power flow constraints across lines
and network losses.
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Future	work	

Include	other	geographic	interdependent	systems,	
	e.g.	thermal	grids,	electric	mass	transit,	natural	gas.	



Research examples 

• Distributed	Optimization	
•  Geographical	Load	Balancing	+	Distributed	Frequency	Control	
•  Demand	Response	Program	Design	

• Online	Optimization	
•  Smoothed	Online	Convex	Optimization	
•  Coincident	Peak	Pricing,	Multi-scale	electricity	markets	

• Big	Data	Systems	
•  Multi-resource	allocation	
•  Bounded	Priority	Fairness,	Interchangeable	Resource	Allocation	
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Solar	+	Wind	energy	outpaces	DR	adoption	
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California	

Solar+Wind	 CAISO	DR	

California	State	Legislature	solution	(2013):	
1,325	MW	of	grid	storage	by	2020	

http://energyalmanac.ca.gov/electricity/electric_generation_capacity.html	
FERC	Assessment	of	Demand	Response	and	Advanced	Metering	Staff	Reports:	2010-2015.	
CAISO	Demand	Response	Barriers	Study	2009.	
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Expensive	



Customer	Load	Reductions	

Mandatory	 Voluntary	

Because	DR	Programs	have	various	Levels	of	Commitment	

Base	Interruptible	Program	(BIP)	
Emergency	Response	Service	(ERS)	

Special	Case	Resources	(SCR)	

Demand	Bidding	Program	(DBP)	
Voluntary	Load	Reduction	(VLR)	
Emergency	DR	Program	(EDRP)	

CAISO	
ERCOT	
NYISO	

27	

DR	programs	allocate	customer	uncertainties	

Customer	is	
responsible	

LSE	is	
responsible	



Customer	uncertainties	

Baseline	

Mandatory	DR	to	
baseline	may	be	costly	

UMass	Trace	Repository:	Smart*	Data	Set	 28	

Voluntary	DR	is	not	
dispatchable	for	LSE.	

vs.	
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Challenges	in	handling	customer	uncertainties	

LSE	does	not	know	each	of	the	customer’s	uncertainties.	

DR	programs	that	have	customers	take	some	
responsibility	are	mandatory.	
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Goal:	Increase	reliable	DR	adoption	

Approach:	Incorporate	Customer	Uncertainties	

Distributed	Algorithm	 Leverage	
Randomness	



Linear	contract	

​𝑥↓𝑖 (𝐷, ​𝛿↓𝑖 )	

Within	10%	Offline	Optimal	solution	

31	

Load	
Reduction	

=	 +	+	Aggregate	
mismatch	

Individual	
mismatch	

Constant	
reduction	

​𝛼↓𝑖 𝐷	 ​𝛽↓𝑖 ​𝛿↓𝑖 	 ​𝛾↓𝑖 	=	 +	 +	

Real-time	Optimal:	Quadratic	cost	functions	

Simple	and	easy	to	implement	
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Customer	cost	functions	raise	challenges	

Accuracy:	LSE	does	not	know	their	cost	functions	

Privacy:	Customers	do	not	want	to	give	up	their	information	

à	Separate	the	DR	decision	problem	



Distributed	Algorithm	

33	

Customer	1		LSE		

Customer	2		

Customer	𝑖				( ​𝛼↓𝑖 , ​𝛽↓𝑖 , ​𝛾↓𝑖 )	

( ​𝛼↓2 , ​𝛽↓2 , ​𝛾↓2 )	

( ​𝛼↓1 , ​𝛽↓1 , ​𝛾↓1 )	

(​𝜋↓𝑖 , ​𝜆↓𝑖 , ​𝜇↓𝑖 )	

(​𝜋↓2 , ​𝜆↓2 , ​𝜇↓2 )	

(​𝜋↓1 , ​𝜆↓1 , ​𝜇↓1 )	(𝝅,𝝀,𝝁)	

Subgradient	Method	



Distributed	Algorithm	converges	to	Centralized	
Theorem:	The	distributed	algorithm’s	trajectory	of	prices	
converges	to	the	optimal	centralized	prices.	
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2	 4	 6	 8	 10	
0	

0.002	

0.004	
​𝛼↓1 	

​𝛼↓2 	

​𝛼↓3 	
2	 4	 6	 8	 10	

0	

2	 4	 6	 8	 10	
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​𝛽↓𝑖 , ​𝛾↓𝑖 	(											remain	at	0	for	centralized	and	distributed	solutions)	
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Customer	cost	uncertainty	
0.1	 0.2	 0.3	 0.4	
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Linear	contract	drawback:	It	is	mandatory.	

Required	compliance	
during	high	customer	
cost	periods		Customer	cost	uncertainty	

Customer	
cost	

time	

Ex.	Important	tasks	that	
need	to	be	completed	

​𝐶↓𝑖 (​𝑥↓𝑖 )	



LIN+(			)	
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Aim	to	avoid	high	customer	cost	periods		

0	 1	

Level	of	Commitment	

LIN	

𝜌	

Customer	commits	to	𝜌	fraction	
of	timeslots	to	follow	LIN	

Commitment	decision	
based	only	on	realized	
cost	function		 ​𝐶↓𝑖 (​𝑥↓𝑖 )= ​𝑎↓𝑖 ​𝑥↓𝑖↑2 	

Ex.	
Quadratic	

Customer	only	knows ​𝑎↓𝑖 	before	
deciding	to	commit	to	DR	



LIN+(𝝆)	reduces	cost	further	than	LIN	only	

𝜌	 LIN	
1	0.8	0.6	0.4	0.2	0	

2300	

2400	

2500	

2600	

2700	

2800	

2900	

RSD(a)	=	0.05	
RSD(a)	=	0.56	

​𝐶↓𝑖 (​𝑥↓𝑖 (𝑡);𝑡)= ​𝑎↓𝑖 (𝑡) ​(​𝑥↓𝑖 (𝑡))↑2 	

Larger	customer	cost	uncertainty	
à	larger	savings	from	LIN+(𝝆)	

37	

Decrease	from	𝜌	=	1		=	1	
àavoids	high	customer	costs	

Further	decrease	of	𝜌		
àlarger	mismatch	for	LSE	

Level	of	Commitment	
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Goal:	Increase	reliable	DR	adoption	

Approach:	Incorporate	Customer	Uncertainties	

Converges	to	
centralized	solution	

	

Lower	Social	Cost	
closer	to	Offline	

Optimal	

Distributed	Algorithm	 Leverage	
Randomness	
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Future	work:	
Incorporate	power	
network	constraints	

Congested	lines	
àNecessary	to	control	local	
mismatches	 ​𝛿↓𝑖 	locally	(with	 ​𝛽↓𝑖 )	

Ex.	Line	constraints	



Research examples 

• Distributed	Optimization	
•  Geographical	Load	Balancing	+	Distributed	Frequency	Control	
•  Demand	Response	Program	Design	

• Online	Optimization	
•  Smoothed	Online	Convex	Optimization	
•  Coincident	Peak	Pricing,	Multi-scale	electricity	markets	

• Big	Data	Systems	
•  Multi-resource	allocation	
•  Bounded	Priority	Fairness,	Interchangeable	Resource	Allocation	
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Artificial Intelligence 

Robotics	

Autonomous	Vehicles	

Smart	Grid	

1. Real-time	decisions	
2. Changing	environment	
3. Switching	Costs	
4. Utilize	past	information	

Continual	Learning	
Stoica,	et	al.	(2017)	
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Example: Dynamic Capacity Provisioning 

Demand		
​𝑦↓𝑡 	

Data	Center	

​𝑥↓𝑡 	 =	#	servers	on	

Operating	Cost	
ℎ(​𝑥↓𝑡 , ​𝑦↓𝑡 )	

Switching	Cost	
𝛽‖​𝑥↓𝑡 − ​𝑥↓𝑡−1 ‖	

+	

Future	demand	predicted	at	𝑡	
​𝑦↓𝑡+1|𝑡 , ​𝑦↓𝑡+2|𝑡 ,…, ​𝑦↓𝑡+𝑤−1|𝑡 	

How	many	servers	should	be	
turned	on/off	right	now?		

Goal:	Design	an	Online	Algorithm	
with	Performance	Guarantees.	
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1-Dimensional	 Multi-Dimensional	

​​sup┬​{​𝑦↓𝑡 , ​​𝑦 ↓𝑡|𝑡 ,…, ​​𝑦 ↓𝑇|𝑡 }↓𝑡=1↑𝑇  � ​cost(ALG)/cost(OPT)  	Competitive	Ratio:	

Lin,	et	al.	(2011):	3-competitive	
Lazy	Capacity	Provisioning	

Bansal,	et	al.	(2015):	3-competitive	
Memoryless	

Bansal,	et	al.	(2015):	2-competitive	

IGCC12:	1+𝑶(​𝟏⁄𝒘 )-competitive	Receding	
Horizon	Control	

1-Step	
Prediction	

IGCC12:	1+𝛀(𝟏)-competitive	Receding	
Horizon	Control	

IGCC12:	1+𝑶(​𝟏⁄𝒘 )-competitive	Averaging	
Fixed	Horizon	Control	
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RHC vs AFHC 
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FHC with limited commitment 𝑣 

1.  	Every	𝒗≤𝑤	rounds,	receive	the	predictions	​​𝑦 ↓𝑡|𝑡 ,…, ​​𝑦 ↓𝑡|𝑡+𝑤−1 	
2.  Solve​​min┬​𝑥↓𝑡 ,…, ​𝑥↓𝑡+𝑤−1  �∑𝜏=𝑡↑𝑡+𝑤−1▒[𝑐(​𝑥↓𝜏 , ​𝑦↓𝜏|𝑡 )

+‖​𝑥↓𝜏 − ​𝑥↓𝜏−1 ‖]  	
3.  Implement	​𝑥↓𝑡 ,…, ​𝑥↓𝑡+𝑣−1 	for	the	next	𝒗	rounds	

Use	𝑣	of	the	calculated	actions	before	using	new	predictions.	

Level	of	Commitment,	𝑣		
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Committed Horizon Control 

1.  Run	𝑣	FHC	algorithms	with	limited	commitment	𝑣,	each	starting	at	a	different	round.	
2.  Use	FHC(k)	to	determine	​𝑥↓𝑡↑(𝑘) ,…, ​𝑥↓𝑡+𝑣−1↑(𝑘) 	
3.  Implement	​𝑥↓𝑡 = ​1/𝑣 ∑𝑘=0↑𝑣−1▒​𝑥↓𝑡↑(𝑘)  	

Average	the	decisions	between	a	set	of	different	𝑣	FHC	algorithms.	
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CHC generalizes RHC and AFHC (Sigmetrics16) 

AFHC	(𝑣=𝑤)	RHC	(𝑣=1)	
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Average-case Analysis 
Theorem:	Let	‖​𝑓↓𝑘 ‖	be	a	measure	of	the	prediction	
error	for	𝑘	steps	into	the	future,	then	
𝐸[cost(𝐶𝐻𝐶)−cost(𝑂𝑃𝑇)]≤ ​2𝑇/𝑣 (𝐷+𝐺∑𝑘=0↑𝑣−1▒​
‖​𝑓↓𝑘 ‖↑𝛼  )	
Optimal	𝒗	depends	on	how	‖​𝒇↓𝒌 ‖	grows	with	𝒌		depends	on	how	‖​𝒇↓𝒌 ‖	grows	with	𝒌		
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Different properties give different optimal 𝑣 

​𝒗↑∗ =𝟏00	(AFHC)	00	(AFHC)	​𝒗↑∗ =𝟏		
(RHC)	

​𝒗↑∗ 
≈𝟕		
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𝛼-Hölder	continuity	-Hölder	continuity	
|𝑐(𝑥, ​𝑦↓1 )−𝑐(𝑥, ​𝑦↓2 )|≤𝐺​‖​𝑦↓1 − ​𝑦↓2 ‖↓2↑𝛼 	

​||𝑓(𝑠)||↓𝐹 =𝑐,				𝐿≥𝑠>0	

Range	limiting	correlation	error	

​||𝑓(𝑠)||↓𝐹 =0,				𝑠>𝐿	

White	noise	variance	
trace(Cov(𝑒))= ​𝜎↑2 	

Illustration	of	Theorem	


