# Moving Bits Not Watts: Geographically Coordinated Frequency Control

Zhenhua Liu

Joint work with Joshua Comden, Tan N. Le, Yue Zhao, Bong Jun Choi Stony Brook University, SUNY Korea

LBNL April 2018

# Short bio

- Assistant Professor at Stony Brook University since 2014
  - Operations research, computer science, Smart Energy Technologies Cluster
  - On leave during 2014.6-2015.8 (ITRI-Rosenfeld Postdoctoral Fellow with Mary Ann)
- PhD in Computer Science 2014, California Institute of Technology
  - MS & BE in Computer Science and Control from Tsinghua University
  - Double degree BS in Economics from Peking University
- Research
  - Sustainable computing, Demand response, Online and distributed optimization, Scheduling and resource allocation, Big Data Systems
  - 4 NSF grants during the past 3 years
  - ~30 publications including SIGMETRICS, NSDI, ~1,600 citations
  - 4 US patents filed, 2 of which have been awarded

# My Wishlist

- Comments/suggestions on my research
- Exploring opportunities
  - Research: real data, systems, domain knowledge, etc
  - Funding: NYSERDA, DoE, other federal agency
    - We can lead or sub
- Long-term collaborations

# Research examples

- Distributed Optimization
  - Geographical Load Balancing + Distributed Frequency Control
  - Demand Response Program Design
- Online Optimization
  - Smoothed Online Convex Optimization
  - Coincident Peak Pricing, Multi-scale electricity markets
- Big Data Systems
  - Multi-resource allocation
  - Bounded Priority Fairness, Interchangeable Resource Allocation

# Data Center ability for Frequency Control



Large potential for Frequency Control

# **Cloud Computing is Interdependent**



# The need for Distribution in Primary FC



### **Distributed Control for PFC**

Optimal Decentralized Primary Frequency Control in Power Networks C. Zhao and S. Low - CDC 2014

**Assumes Independent Costs** → Separable Objective Function (valid for some applications)

**Cloud Computing Costs are Interdependent** → Inseparable Objective Function

## **Goal**: Design Primary FC that uses a **Network of Data Centers**

### **<u>Approach</u>**: Incorporate **Interdependent** Costs



#### **Distributed Control Laws**



#### **Simulation Results**

# **Cloud Computing Model**



# **Power Network Model**



# System Dynamics Model



 $\frac{dP\downarrow j\uparrow * /dt = 0}{\text{(no change in power injection)}}$ 

 $\omega \downarrow j \uparrow * = \omega$  (all buses at same frequency)

# Geographic Frequency Control Problem

Minimize<br/> $s,d,\omega$ Cost of PFC to Data Centers+Cost of Frequency Deviations $g(s)+\sum j\uparrow c \downarrow j(d \downarrow j)$  $\sum j\uparrow c \downarrow j/2 \omega \downarrow j/2$ 

s.t.

Computational Processing Power Balance

 $s = \sum j \uparrow a \downarrow j d \downarrow j - W - \sum j \uparrow a \downarrow j d \downarrow j$ 

**Electrical Power Network Balance** 

 $0 = \sum j \uparrow (p \downarrow j - D \downarrow j \, \omega \downarrow j - d \downarrow j)$ 

## **Goal**: Design Primary FC that uses a **Network of Data Centers**

### **<u>Approach</u>**: Incorporate **Interdependent** Costs



#### **Distributed Control Laws**



#### **Simulation Results**

# **Distributed Control Laws**



# **Control Laws Converge to an Optimal Point**

Stability

<u>Theorem</u>: The trajectory of  $(\omega, P, d, s, \mu)$  asymptotically converges to an equilibrium point  $(\omega \uparrow *, P \uparrow *, d \uparrow *, s \uparrow *, \mu \uparrow *)$ .

#### Optimality

<u>Theorem</u>: An equilibrium point ( $\omega \hat{1} *$ ,  $P \hat{1} *$ ,  $d \hat{1} *$ ,  $s \hat{1} *$ ,  $\mu \hat{1} *$ ) is **optimal** to the Geographic Frequency Control Problem.

## **Goal**: Design Primary FC that uses a **Network of Data Centers**

### **<u>Approach</u>**: Incorporate **Interdependent** Costs



#### **Distributed Control Laws**



#### **Simulation Results**

# **Simulation Setup**

#### **New England IEEE 39-bus**



#### **Power System Toolbox (Matlab)**

= 25 MW Data Center
Each with different efficiency
10 Data Centers = 1.8% Total Demand

Each Data Center shares a fraction of a 100 MW equivalent computational workload.

Interdependent cost:  $g(s) = \gamma s t^2$ 

= Disturbance of 50 MW Drop in Power

http://icseg.iti.illinois.edu/ieee-39-bus-system/

# Proposed Control Laws Stabilize the System

Converges to equilibrium within 30 seconds



OLC (No Interdependent Costs) Optimal Decentralized Primary Frequency Control in Power Networks C. Zhao and S. Low - CDC 2014

# Cost of Proposed Control Laws is near Optimal



Proposed incorporates Interdependent costs, whereas OLC does not.

## **<u>Goal</u>**: Design Primary FC that uses a **Network of Data Centers**

Approach: Incorporate Interdependent Costs

Asymptotically Converges toward Optimal Cost Converges to an Equilibrium that is near Optimal Cost

**Distributed Control Laws** 

**Simulation Results** 

**Bonus: Communication and implementation Delay** 

# **Distributed Control Laws**



# System with delay

Equilibrium (θî\*,ωî\*,Pî\*,dî\*,s)

 $\forall j$ :  $d\omega \downarrow j\uparrow * /dt = 0$  (no change in frequency)

 $\frac{dP\downarrow j\uparrow * /dt = 0}{\text{(no change in power injection)}}$ 

 $\omega \downarrow j \uparrow * = \omega$  (all buses at same frequency)

#### And hold for at least **\Delta** of time

<u>Stability:</u> if *β* is small enough, the trajectory asymptotically approaches an equilibrium point.

<u>Corollary:</u> An equilibrium point (  $\omega \uparrow *$ ,  $P \uparrow *$ ,  $d \uparrow *$ ,  $s \uparrow *$ ,  $\mu \uparrow *$ ) is **optimal** to the Geographic Frequency Control Problem.



(c) Impact of communication delay

# **Future work**

## Include other geographic interdependent systems, e.g. thermal grids, electric mass transit, natural gas.



# Research examples

- Distributed Optimization
  - Geographical Load Balancing + Distributed Frequency Control
  - Demand Response Program Design
- Online Optimization
  - Smoothed Online Convex Optimization
  - Coincident Peak Pricing, Multi-scale electricity markets
- Big Data Systems
  - Multi-resource allocation
  - Bounded Priority Fairness, Interchangeable Resource Allocation

# Solar + Wind energy outpaces DR adoption



http://energyalmanac.ca.gov/electricity/electric\_generation\_capacity.html FERC Assessment of Demand Response and Advanced Metering Staff Reports: 2010-2015. CAISO Demand Response Barriers Study 2009. DR programs allocate customer uncertainties

Because DR Programs have various Levels of Commitment



# **Customer uncertainties**



# Challenges in handling customer uncertainties

#### LSE does not know each of the customer's uncertainties.

DR programs that have customers take some responsibility are **mandatory**.

# **Goal**: Increase **reliable** DR adoption

# **<u>Approach</u>**: Incorporate Customer Uncertainties



#### **Distributed Algorithm**



#### Leverage Randomness

# Linear contract



Simple and easy to implement
Within 10% Offline Optimal solution
Real-time Optimal: Quadratic cost functions

# Customer cost functions raise challenges

**Accuracy:** LSE does not know their cost functions

**Privacy:** Customers do not want to give up their information

→ Separate the DR decision problem

# **Distributed Algorithm**



# Distributed Algorithm converges to Centralized



 $(\beta \downarrow i, \gamma \downarrow i emain at 0 for centralized and distributed solutions)$ 

# Linear contract drawback: It is mandatory.





Commitment decision based **only** on realized cost function Ex.

**Quadratic**  $C\downarrow i (x\downarrow i) = a\downarrow i x\downarrow i$ <sup>12</sup>

Customer only knows *ali* before deciding to **commit** to DR

# LIN+(p) reduces cost further than LIN only



Decrease from = 1 →avoids high customer costs

Further decrease of →larger mismatch for LSE

Larger customer cost uncertainty  $\rightarrow$  larger savings from LIN+( $\rho$ )

# **Goal**: Increase **reliable** DR adoption

# **<u>Approach</u>**: Incorporate Customer Uncertainties

# Converges to centralized solution

Lower Social Cost closer to Offline Optimal

**Distributed Algorithm** 

Leverage Randomness

# **Future work:**

Incorporate power network constraints



## **Ex. Line constraints**

Congested lines  $\rightarrow$  Necessary to control local mismatches  $\delta Ii$  locally (with  $\beta Ii$ )

# Research examples

- Distributed Optimization
  - Geographical Load Balancing + Distributed Frequency Control
  - Demand Response Program Design
- Online Optimization
  - Smoothed Online Convex Optimization
  - Coincident Peak Pricing, Multi-scale electricity markets
- Big Data Systems
  - Multi-resource allocation
  - Bounded Priority Fairness, Interchangeable Resource Allocation

# Artificial Intelligence



# Example: Dynamic Capacity Provisioning



**Operating Cost**+**Switching Cost** $h(x \downarrow t, y \downarrow t)$  $\beta ||x \downarrow t - x \downarrow t - 1 ||$ 

How many servers should be turned on/off right now?

**Goal:** Design an Online Algorithm with Performance Guarantees.



Competitive Ratio:  $\{y \downarrow t, y \downarrow t | t, ..., y \downarrow T | t\} \downarrow t = 1 \uparrow T \quad cost(A_{--})$ 

#### **Multi-Dimensional**

IGCC12: 1+Ω(1)-competitive Receding Horizon Control

IGCC12: 1+O(1/w)-competitive Averaging Fixed Horizon Control



## RHC vs AFHC



# FHC with limited commitment u

Level of Commitment, v

Use v of the calculated actions before using new predictions.

- 1. Every  $\mathcal{V} \leq w$  rounds, receive the predictions  $y \downarrow t | t, ..., y \downarrow t | t + w 1$
- 2. Solve  $\min -x \downarrow t$ , ...,  $x \downarrow t + w 1$   $\sum \tau = t \uparrow t + w 1$   $\left[ c(x \downarrow \tau, y \downarrow \tau | t) + \|x \downarrow \tau x \downarrow \tau 1 \| \right]$



# Committed Horizon Control

Average the decisions between a set of different *v* FHC algorithms.

- 1. Run  $\mathcal{V}$  FHC algorithms with limited commitment  $\mathcal{V}$ , each starting at a different round.
- 2. Use FHC<sup>(k)</sup> to determine  $x \downarrow t \uparrow (k)$ ,..., $x \downarrow t + v 1 \uparrow (k)$
- 3. Implement  $x \downarrow t = 1/\nu \sum k = 0 \uparrow \nu 1 \implies x \downarrow t$



# CHC generalizes RHC and AFHC (Sigmetrics16)



AFHC

# Average-case Analysis

**<u>Theorem</u>**: Let ||f|k|| be a measure of the prediction error for k steps into the future, then

$$\begin{split} & E[\operatorname{cost}(CHC) - \operatorname{cost}(OPT)] \leq 2T/\nu \left(D + G\sum k = 0 \uparrow \nu - 1 \right) \\ & \|f \downarrow k\| \uparrow \alpha \end{split}$$

Optimal *v* depends on how *||f↓k ||* grows with *k* 

# Different properties give different optimal $\nu$

#### **Illustration of Theorem**

*a*-Hölder continuity

 $|c(x,y\downarrow 1) - c(x,y\downarrow 2)| \leq G ||y\downarrow 1 - y\downarrow 2 ||\downarrow 2\uparrow\alpha$ 

White noise variance

trace(Cov(e))= $\sigma$ 12

Range limiting correlation error

(RHC)

 $||f(s)||\downarrow F = c, L \ge s > 0$  $||f(s)||\downarrow F=0, s>L$ 

