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Smart Buildings

What?

= Grid interactive
= Flexible and resilient

= Provide grid services

= Occupant responsive
= Human building interaction

= Respond to individual demand

= Minimize unnecessary waste
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Smart Buildings

How?
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Sensing

You cannot manage what you cannot measure
-- Peter Drucker



Previous work
Sensing

Sensing
¢ Conventional building + Smart building
a Sensing physical - o Occupant related
parameter only sensing

¢ Our work

o Enhance sensing accuracy, cost effectiveness, scalability,
and address other concerns (e.g. privacy)
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Previous work
Sensing

Outlier Detection

+ Motivation
o Sensing occupant response
a Outliers in subjective comfort vote undermine accuracy
o Lack of research on detecting outliers in subjective vote data

¢ Goal

o Proposes an outlier detection framework to automatically flag
potential outliers in subjective thermal comfort votes

o Key challenge: individual difference vs. outliers

~

; A
Il
reererer

Energy Technologies Area BERKELEY LAB



Previous work

Sensing

Outlier Detection

¢ How?

D Step 1:
New Defining similar conditions
votes

using k-Nearest Neighbor

_|Quantifying dissimilarities
" lusing Multivariate

Step 2:

Flag as outliers?

Gaussian regression

o Test it on ASHRAE thermal comfort database
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Previous work
Sensing

Outlier Detection

¢ Contribution
o We proposed a stochastic two-step framework
- Users could tune contextual attributes, distance measures
o Could be used for real-time occupant responsive control

- Computationally efficient
- Active, online learning

Wang, Z., Parkinson, T., Li, P., Lin, B. and Hong, T., 2019. The Squeaky wheel: Machine learning for anomaly
detection in subjective thermal comfort votes. Building and Environment, 151, pp.219-227.
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Previous work
Sensing

Inferring Occupant Counts

+ Motivation
o Sensing occupant counts

o Current occupant sensing technologies are expensive or
labor-intensive

¢ Goal

o Propose a new approach to detect occupant counts
through Wi-Fi, which is non-intrusive, cost-effective

o Challenge: accuracy vs. privacy
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Previous work

Sensing

Inferring Occupant Counts

¢ How?
o Feature

- Key idea: Cluster the devices based on connection time/duration
- The clustering could be done locally with a simple script (edge

computing)
Time Target zone Device_type Device_count

. . 20180521_0000 Zonel Short term (less than 1h per day) 0
Time Shuffled Device_ID AP_ID
20180521_0000 Zone 1 Long term (more than 12h per day) 20
20180521_0000 dfd6bafb68cled1fle2d9190ca9d55f0 apl35-4206w 20180521_0000 Zone 2 Short term (less than 1h per day) 0
20180521_0000 e6clfe930c6d2c2f2e2d9d69fc0abeda  apl35-3103
20180521_0000 Zone 2 Long term (more than 12h per day) 15
20180521 0000 dd464552ecc1208e94a955bffeelf749 apl35-4110 20180521_0010 Zonel Short term (less than 1h per day) 0
20180521_0010 dfdebafb68cled1fle2d9190ca9d55f0 apl3s-4206w
20180521_0010 e6clfe930c6d2c2f2e2d9d69fc0abeda  ap135-3103 20180521_0010 Zone 1 Long term (more than 12h per day) 21

(a) Raw data collected (b) data input to the machine learning algorithm
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Previous work
Sensing

Inferring Occupant Counts

+ How?

o Algorithm
- Random Forest outperforms the other two
- The sequential information does not really help

Random Forest (RF) Neural Network (NN) LSTM
RMSE on the training set 1.20 2.63 221
RMSE on the testing set 3.95 4.62 4.52
Computation time® 2.38s 24.86s 65.61s

Wang, Z., Hong, T., Piette, M.A. and Pritoni, M., 2019. Inferring occupant counts from Wi-Fi data in buildings
through machine learning. Building and Environment, 158, pp.281-294.
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Previous work
Sensing

Sensing: summary

¢ Use data-driven method to

o Sense occupant feedback
- Accurate

0 Sense occupant counts
- Accurate
- Cost-effective
- Scalable
- Protect privacy
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Smart Buildings

How?
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Prediction

Management is prediction
-- Deming W.E.



Previous work
Prediction

Prediction

¢ Conventional building + Smart building
o Schedule, fixed - o Prediction, adaptive

¢ Our work

o Summarize and compare prediction methods

A yt_l’ ---’yt_p’ xt_l, ---,xt_q

5 e AN/
Trland|t|0nal Machine learning
regression-based - > approaches
approaches -- Shallow ML

-- Deep learning
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Previous work
Prediction

Prediction: Method

¢ Case
o Plug load prediction

o Comparison

- Algorithm: ARIMA (Statistical) vs. LSTM (Machine Learning)
- Additional feature: occupant count

o Baseline: naive persistent method
25%

¢ Finding . "
_ 3 ®LSTM with occ
o LSTM with occ outperforms Ezo% ALSTM without occ
: : S " ARIMA with occ
¢+ Implication i _
E 15% ARIMA without occ
o Select machine learning 3 m Benchmark
0
10%
o Add relevant feature 0o, 159, 0% 250

Wang, Z., Hong, T. and Piette, M.A., 2019. Predicting plug loads with occupant count data through a deep learning approach.
Energy, 181, pp.29-42.



Previous work
Prediction

Prediction: Why ML outperforms

Regression Ve = Vi 1t o+ apYep t &+ 0161+ + 046
based

AR terms MA terms

o « Each neuronis a
Neural network .»-.;';: , linear regression plus
based activation function

® « Could capture any

O form of relation

theoretically
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Previous work
Prediction

Prediction under Uncertainty

¢+ Problems
o Adding relevant feature is helpful

o In real-time prediction, the input feature is also predicted,
which unavoidably has errors

= ground truth
forecast 1h ahead

--- forecast 8h ahead

--- forecast 24h ahead

Dry-bulb Temperature / degC
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Previous work
Prediction

Prediction under Uncertainty

¢+ Which approach is more robust to input uncertainty

Statistical

W WWY"
ML

Shallow
ML

| Deep
Vs learning
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Previous work
Prediction

Prediction under Uncertainty

¢ Case
o Building load prediction
o Compare XGBoost (shallow) vs. LSTM (deep)
¢+ Finding
o Without input uncertainty: shallow model outperforms
o With input uncertainty: deep model outperforms

1o ; %%:;jimm Weather forecast uncertainty | Weather forecast uncertainty considered
~ D not considered Train on real, test on Train on forecast, test on
%m ' forecast weather forecast weather
£ s00
; . XGBoost 15.2% 27.7% 23.3%
0 LSTM 20.2% 21.2% 21.0%
D(m Best Baseline 29.9% 29.9% 29.9%
Pt

Prediction result Error: CV(RMSE)
Energy Technologies Area




Previous work
Prediction

Prediction under Uncertainty

¢+ Implications
o Uncertainty needs to be considered
o Deep learning is recommended

o The model is recommended to be trained using the
forecasted (uncertain) weather data

0.012 -

0.010 1

—— XGBoost: train and test on real weather
---- XGBoost: train on real, test on forecast
-------- XGBoost: train and test on forecast

o o
o o
o o
[0)] co

Proportion

0.004 1

0.002 1

0.000 ‘ . . . .
—-400 —200 0 200 400
Cooling load prediction error / kW



Previous work
Prediction

Prediction: Summary

+ Accuracy
o ML outperforms statistical approach
+ Uncertainty
o Deep model is more robust to input uncertainty
o Expose model to uncertainty during training stage
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Smart Buildings

How?
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Modelling

All models are wrong, but some are useful
-- George Box



Previous work
Modelling

Modeling

¢ Conventional building + Smart building

o Feedback control ‘ o Model-based

Feedforward control
¢ Problem

o Gap between model and reality
¢ Our work

a Improve modelling accuracy: consider occupant behaviors
o Data-driven approach
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Previous work
Modelling

Modeling Occupant Behaviors (OB)

+ Motivation
o OB: major source for performance gap
- Fixed schedule vs. dynamic, stochastic

o Need new OB modelling tools

+ Tool developments
o Developed Buildings.Occupants, and open-sourced with
Modelica Buildings Library

- Simulate occupancy, lighting, windows, blinds, heating and
thermostat behaviors in office and residential buildings

* Include 34 models in the current version

B Wang, Z., Hong, T. and Jia, R., 2019. Buildings. Occupants: a Modelica package for modelling !
occupant behaviour in buildings. Journal of Building Performance Simulation, 12(4), pp.433-444.



Previous work
Modelling

Modeling Occupant Behaviors

- Detailed Small Office
OpenStudio-standards Model

¢+ Application Gom

o Realisic || W [ ‘

building

Y

load curve ' v '
l_ LOD1 —l l_ LOD 2 —l r LOD 3 —l

Base“ne: Occupancy Occupancy

DOE reference

models Lighting Lighting

MELs MELs
Zone Temperature Setpoint Zone Temperature Setpoint
Demand Controlled Ventilation

L * I . * I . * _
Simulations Simulations Simulations
—— Run 1l — Run 1
Tﬂ ‘p Run 2 " Run 2
_ P Batch . P Batch .
Energy Technolc Run n Run n




Previous work
Modelling

Modeling Occupant Behaviors

¢+ Application

DOE Reference model

o Realistic
building
load curve

||||||
JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ

Our proposed model

Which one is
more
realistic? W
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Previous work
Modelling

Modeling Occupant Behaviors

¢+ Results
100

reference mean score: 56.16%

oo
o

(o))
o

reference model
proposed model

Number of days
o
o

20 1

0.0 0.2 0.4 0.6 0.8 1.0
Classification score
« Classification score: output of the sigmoid function

« Approaching to 1: more similar to the measured data
* Approaching to O: less similar to the measured data




Previous work
Modelling

Data-driven Model-free Approach

+ Motivation

o Physics-based model: too many assumptions and inputs
¢ Solution

o Explored data-driven approach

o Generative Adversarial Network (GAN)

~—

—
Real load »| Discriminator |——»< 2200
profiles

~———

N

—

Randomly sample
Qm the latent space) Generator > |f:jn§rr§;§:s
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Previous work
Modelling

Data-driven Model-free Approach

¢ Smart meter data

¢+ Generated by GAN

Random initialization
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Previous work
Modelling

Data-driven Model-free Approach

o Validation

¢+ Application 5 Alert
~—
— ]
Real load »| Discriminator |——a< 2500
profiles
~———
— ]
Randomly sample
( D—' S | e
~———

o Anonymize

o Forecast
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Previous work
Modelling

Modelling: summary

¢ Accuracy

o Modelling occupant behavior to reduce performance gap
¢+ Data-driven

o Use GAN to generate building load
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Thoughts and future plans

Data-driven vs. physics-based

Physics-based

¢+ Pain-point
a Every building is unique

AéA ‘ml Y AN
e ol

llfil AL il nLE ®  Photo courtesy:
L twincities.com
0 e
i I [}
- Photo courtesy:
1 Businesslinsider
Case by case Standardized mass productio
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Thoughts and future plans

Data-driven vs. physics-based

Physics-based

¢+ Pain-point
a Every building is unique

A detailed model might not Source: Wang et al., 2019
make economic sense %

80%

o Make simplifications
- Difficult assumptions

ility of window open
(o))
o
R

- Uncertainty/error 2 40%
Q
®
. ol
propagation 2 50%
o Interact with non- o
. . . 10 15 20 25 30 35 40
determmIStIC humanS Outdoor Temperature/oC
—e—Haldi2008 Windows —e»—Herkel2008WindowsSmall
Herkel2008WindowsTiltedOpen Herkel2008WindowsCompletelyOpen
—e—Yun2008Windows —o—Zhang2012WindowsAll
—e—Zhang2012WindowsNorth —e—Zhang2012WindowsWest

Energy TeChn0|0g|es Al"ea —e—Zhang2012WindowsSouth —e—Zhang2012WindowsEast



Thoughts and future plans

Data-driven vs. physics-based

Data-driven

¢ Architecture

o Reflect the nature of the problem/building
- Customize the structure, encoding the nature of physics

- Customize the objective function, based on the problem to be
solved

+ Parameters

o Learned from the data
- No assumptions are needed
- Let the data speak
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Thoughts and future plans

Data-driven vs. physics-based

Data-driven

¢ Benefits and improvements
o More flexible model architecture
o More powerful parameter identification

¢ Has improved sensing, prediction, and modelling
¢+ What’s next?
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Thoughts and future plans

Plan

Control actions

* Controllable parameters might vary by
buildings and HVAC systems

Occupant responsive
Grid interactive

Target building
* Equipped with onsite
renewables and energy

¢ LDRD

storage; interacting with the
l grid and occupants

- ——

: Smart grid ™,
p rOJ eCt B Utility price
I "7« DRsignals
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1 I
starting |
P 0 Rewards !
22% Vv e YN * Energy consumption i Onsite
soon 7T % Ny ¢ tility bills 1 renewable
¥ o ) oF Occupant well-being :
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P~ ) > : Energy
=5 S " : storage
: \\‘:' e n S I n g 1

DRL Controller :

* iDifereniticarning States from observation ' uman:
algorithms and : ', Simulation environment building
approaches *  Indoor environment R interactions ~

* Outdoor environment S L
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States from prediction
*  Weather forecast

E nel"gy Te * Inferred occupant counts

* Predicted internal loads ...

Prediction
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Thanks for your attention
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About myself

¢ Education Google Scholar
2011 | Bachelor | Civil Engineering Tsinghua Cited by
2014 | Master Energy Technology | University of Al Since 2014
Cambridge Citations 335 335
2017 | Ph.D. Civil Engineering | Tsinghua e . .
180
¢ Working j 13
2016-2018 Energy consultant | World Bank -
2017-2018 Postdoc UC Berkeley 2l
2018-2019 Postdoc LBNL ThommmemeE o
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