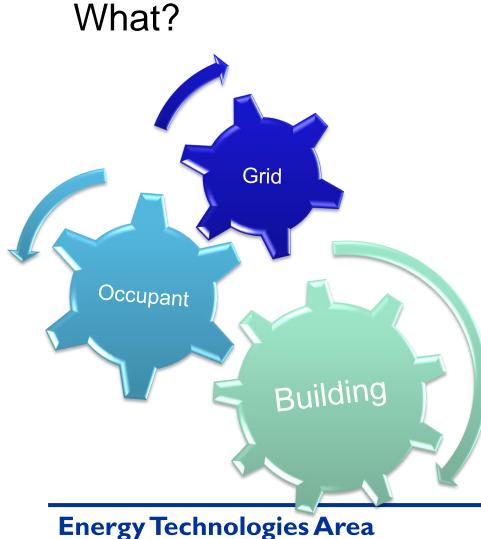
Data-Driven Smart Buildings

Zhe Wang, PhD

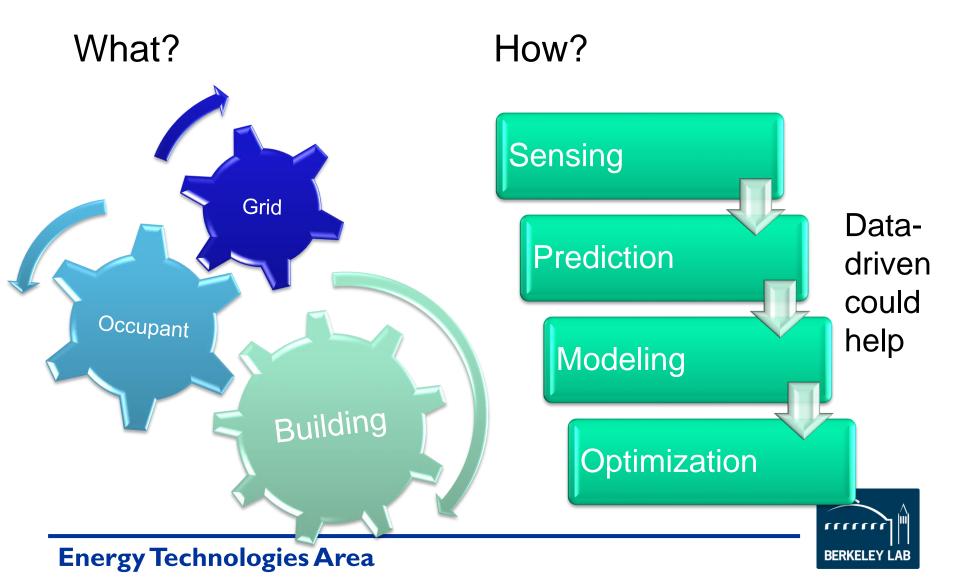
Building Technology and Urban Systems Division

Smart Buildings



- Grid interactive
 - Flexible and resilient
 - Provide grid services
- Occupant responsive
 - Human building interaction
 - Respond to individual demand
 - Minimize unnecessary waste

Smart Buildings



Previous work

- Sensing
- Prediction
- Modelling

Thoughts and future plans

- Data-driven vs. physics-based
- How

Previous work

- Sensing
- Prediction
- Modelling
- Thoughts and future plans
 - Data-driven vs. physics-based
 - **u** How

Sensing

You cannot manage what you cannot measure -- Peter Drucker

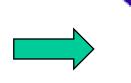
Thoughts and future plans

Data-driven vs. physics-based -- How

Sensing

Conventional building

 Sensing *physical parameter* only



Smart building

 Occupant related sensing

Our work

 Enhance sensing accuracy, cost effectiveness, scalability, and address other concerns (e.g. privacy)

Data-driven vs. physics-based -- How

Outlier Detection

Motivation

- Sensing occupant response
- Outliers in subjective comfort vote undermine accuracy
- Lack of research on detecting *outliers in subjective vote data*

Goal

- Proposes an outlier detection framework to automatically flag potential outliers in subjective thermal comfort votes
- Key challenge: individual difference vs. outliers

Previous work

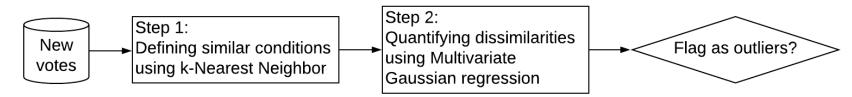
Sensing - Prediction -- Modelling

Thoughts and future plans

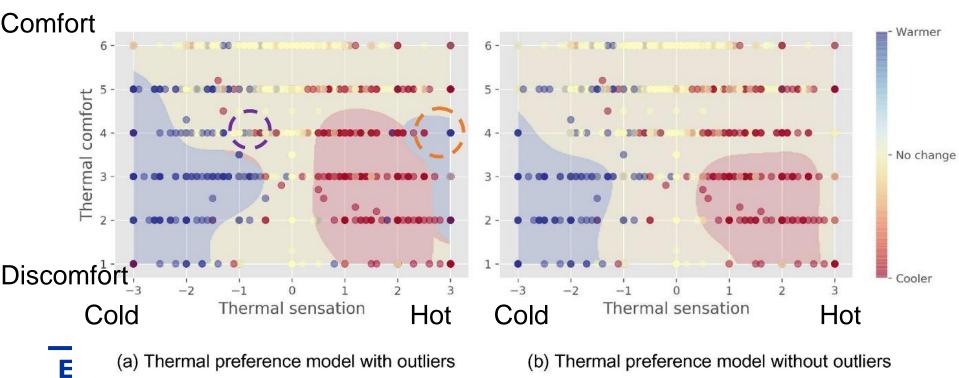
Data-driven vs. physics-based -- How

Outlier Detection

How?



Test it on ASHRAE thermal comfort database



Data-driven vs. physics-based -- How

Outlier Detection

Contribution

- We proposed a stochastic two-step framework
 - Users could tune contextual attributes, distance measures
- Could be used for real-time occupant responsive control
 - Computationally efficient
 - Active, online learning

Wang, Z., Parkinson, T., Li, P., Lin, B. and Hong, T., 2019. The Squeaky wheel: Machine learning for anomaly detection in subjective thermal comfort votes. Building and Environment, 151, pp.219-227.

Data-driven vs. physics-based -- How

Inferring Occupant Counts

Motivation

- Sensing occupant counts
- Current occupant sensing technologies are *expensive* or labor-intensive

Goal

- Propose a new approach to detect occupant counts through Wi-Fi, which is *non-intrusive, cost-effective*
- Challenge: accuracy vs. privacy

Data-driven vs. physics-based -- How

Inferring Occupant Counts

How?

• Feature

- Key idea: Cluster the devices based on connection time/duration
- The clustering could be done locally with a simple script (*edge computing*)

Time	Shuffled Device_ID	AP_ID
20180521_0000	dfd6bafb68c1cd1f1e2d9190ca9d55f0	ap135-4206w
20180521_0000	e6c1fe930c6d2c2f2e2d9d69fc0abeda	ap135-3103
20180521_0000	dd464552ecc1208e94a955bffee1f749	ap135-4110
20180521_0010	dfd6bafb68c1cd1f1e2d9190ca9d55f0	ap135-4206w
20180521_0010	e6c1fe930c6d2c2f2e2d9d69fc0abeda	ap135-3103

(a) Raw data collected

Time	Target zone	Device_type	Device_count
20180521_0000	Zone 1	Short term (less than 1h per day)	0
20180521_0000	Zone 1	Long term (more than 12h per day)	20
20180521_0000	Zone 2	Short term (less than 1h per day)	0
20180521_0000	Zone 2	Long term (more than 12h per day)	15
20180521_0010	Zone 1	Short term (less than 1h per day)	0
20180521_0010	Zone 1	Long term (more than 12h per day)	21
1			

(b) data input to the machine learning algorithm

Data-driven vs. physics-based -- How

Inferring Occupant Counts

How?

Algorithm

- Random Forest outperforms the other two
- The sequential information does not really help

	Random Forest (RF)	Neural Network (NN)	LSTM
RMSE on the training set	1.20	2.63	2.21
RMSE on the testing set	3.95	4.62	4.52
Computation time ^a	2.38s	24.86s	65.61s

Wang, Z., Hong, T., Piette, M.A. and Pritoni, M., 2019. Inferring occupant counts from Wi-Fi data in buildings through machine learning. Building and Environment, 158, pp.281-294.

Thoughts and future plans

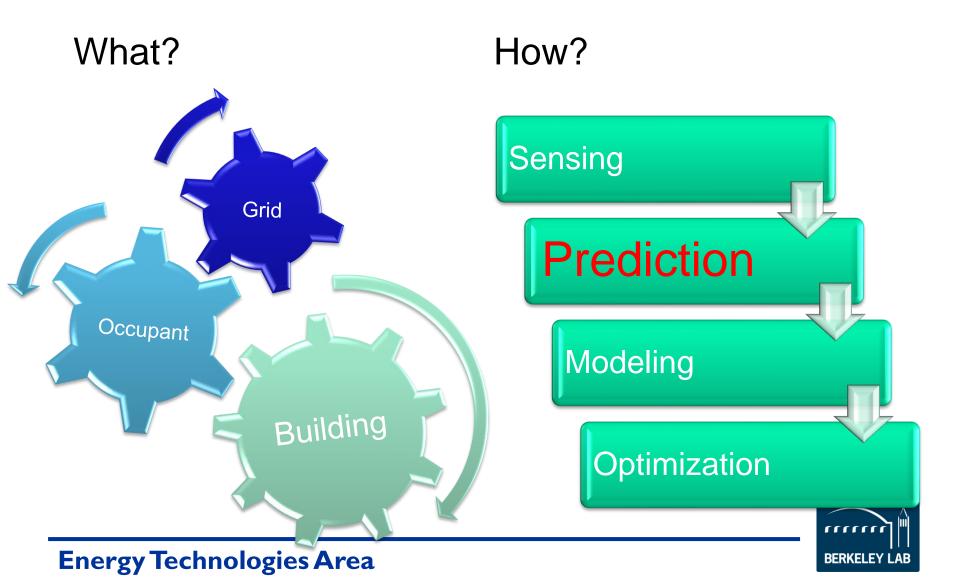
Data-driven vs. physics-based -- How

Sensing: summary

Use data-driven method to

- Sense occupant feedback
 - Accurate
- Sense occupant counts
 - Accurate
 - Cost-effective
 - Scalable
 - Protect privacy

Smart Buildings



Prediction

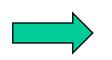
Management is prediction -- Deming W.E.

Thoughts and future plans

Data-driven vs. physics-based -- How

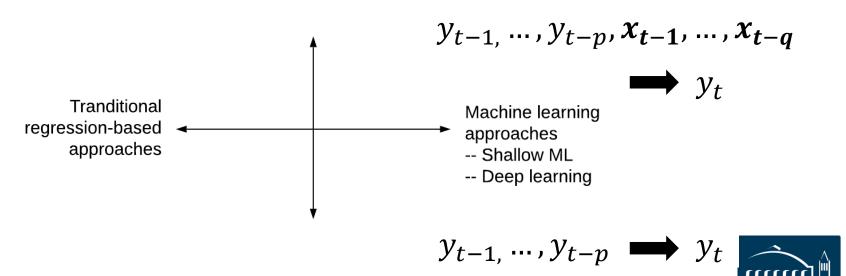
Prediction

- Conventional building
 - □ Schedule, fixed



- Smart building
 - Prediction, adaptive

- Our work
 - Summarize and compare prediction methods



Data-driven vs. physics-based -- How

Prediction: Method

Case

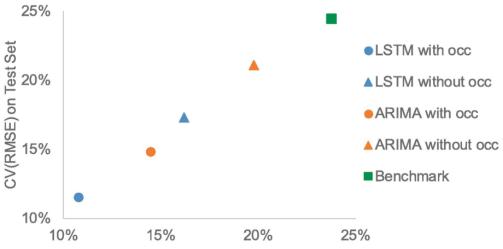
- Plug load prediction
- Comparison
 - Algorithm: ARIMA (Statistical) vs. LSTM (Machine Learning)
 - Additional feature: occupant count
 - Baseline: naïve persistent method

Finding

□ *LSTM with occ* outperforms

Implication

- Select machine learning
- Add relevant feature

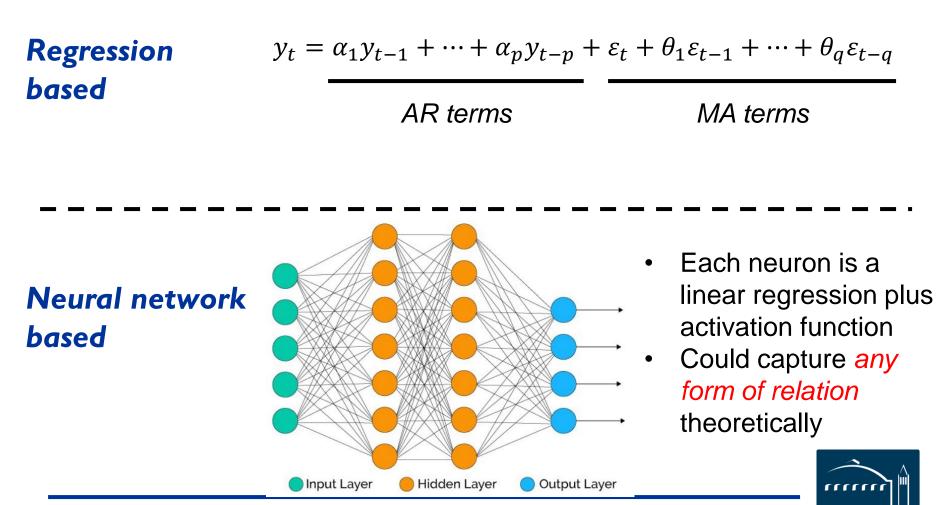


Wang, Z., Hong, T. and Piette, M.A., 2019. Predicting plug loads with occupant count data through a deep learning approach. *Energy*, 181, pp.29-42.

Thoughts and future plans

Data-driven vs. physics-based -- How

Prediction: Why ML outperforms



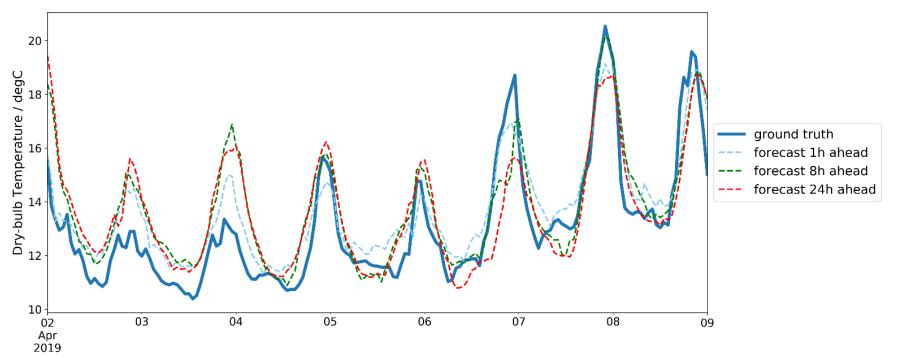
Energy Technologies Area

Data-driven vs. physics-based -- How

Prediction under Uncertainty

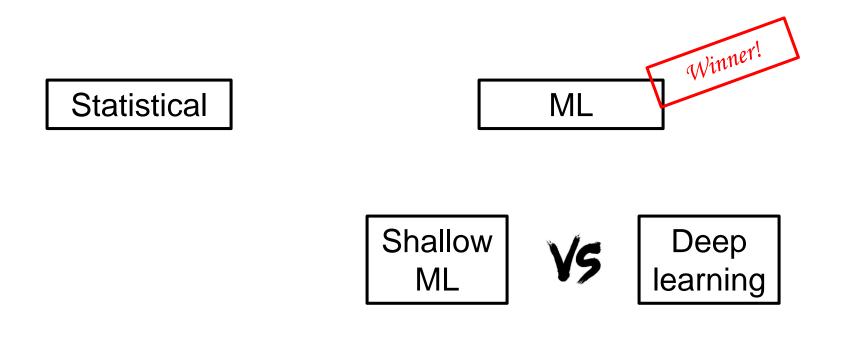
Problems

- Adding relevant feature is helpful
- In real-time prediction, the input feature is also predicted, which unavoidably has errors



Prediction under Uncertainty

Which approach is more robust to input uncertainty



BERKELEY

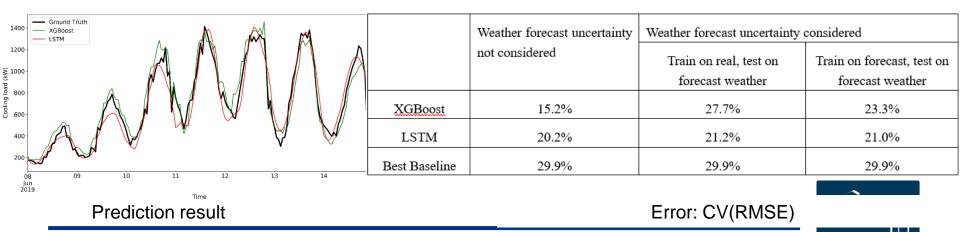
Prediction under Uncertainty

Case

- Building load prediction
- □ Compare XGBoost (shallow) vs. LSTM (deep)

Finding

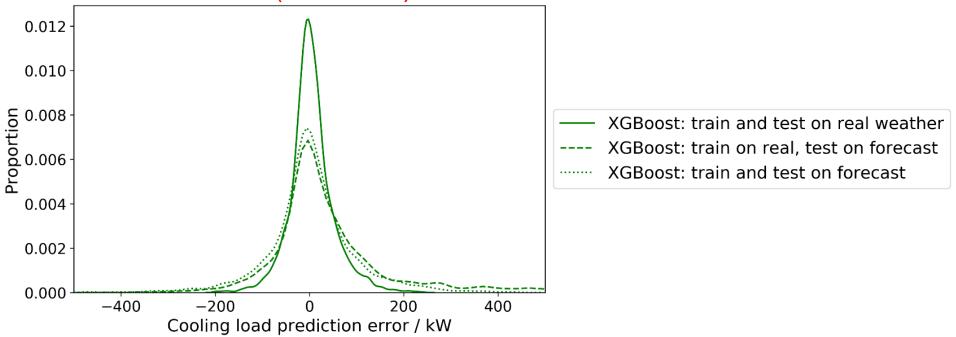
- Without input uncertainty: shallow model outperforms
- With input uncertainty: deep model outperforms



Prediction under Uncertainty

Implications

- Uncertainty needs to be considered
- Deep learning is recommended
- The model is recommended to be trained using the forecasted (uncertain) weather data



Data-driven vs. physics-based -- How

Prediction: Summary

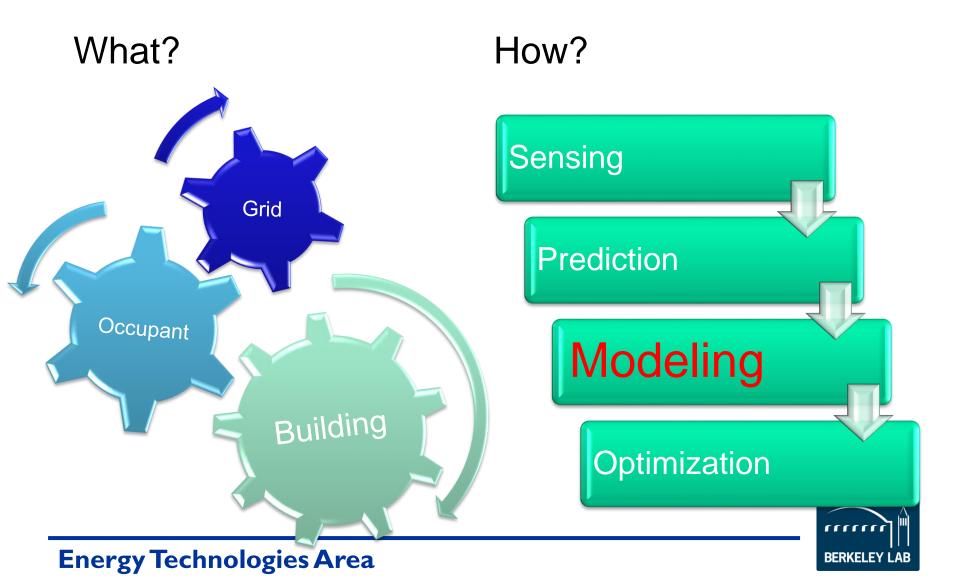
Accuracy

ML outperforms statistical approach

Uncertainty

- Deep model is more robust to input uncertainty
- Expose model to uncertainty during training stage

Smart Buildings



Modelling

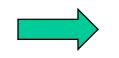
All models are wrong, but some are useful -- George Box

Thoughts and future plans

Data-driven vs. physics-based -- How

Modeling

- Conventional building
 - Feedback control



Smart building

Model-based
Feedforward control

Problem

Gap between model and reality

Our work

- Improve modelling accuracy: consider occupant behaviors
- Data-driven approach

Modeling Occupant Behaviors (OB)

Motivation

- OB: major source for performance gap
 - Fixed schedule vs. dynamic, stochastic
- Need new OB modelling tools

Tool developments

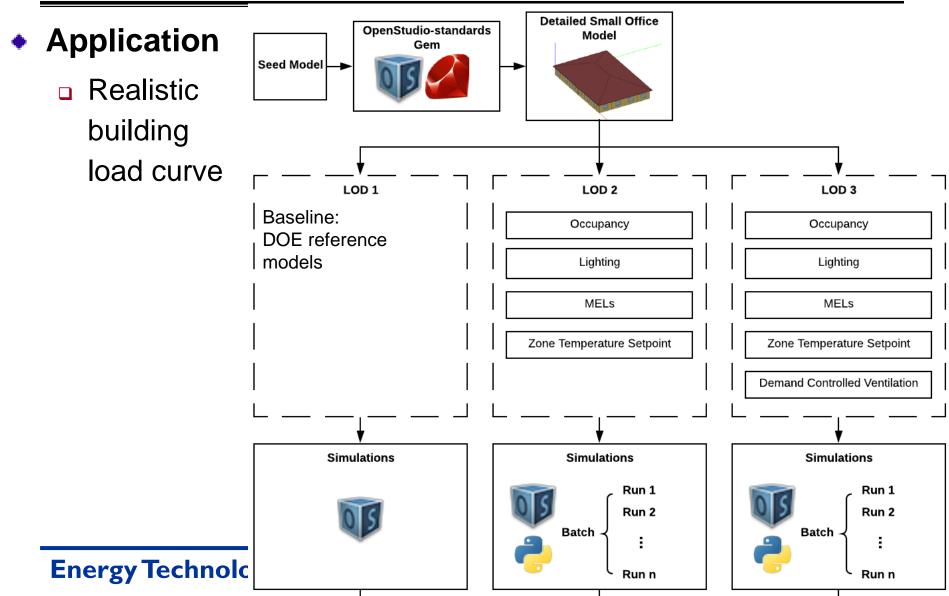
- Developed Buildings.Occupants, and open-sourced with Modelica Buildings Library
 - Simulate occupancy, lighting, windows, blinds, heating and thermostat behaviors in office and residential buildings
 - Include 34 models in the current version

Wang, Z., Hong, T. and Jia, R., 2019. Buildings. Occupants: a Modelica package for modelling occupant behaviour in buildings. *Journal of Building Performance Simulation*, *12*(4), pp.433-444.

Thoughts and future plans

Data-driven vs. physics-based -- How

Modeling Occupant Behaviors



Thoughts and future plans

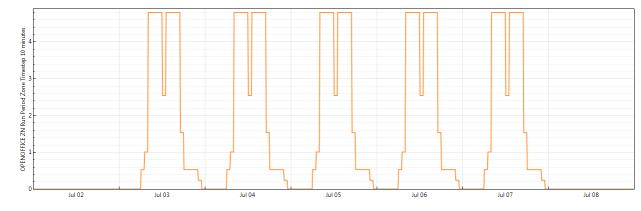
Data-driven vs. physics-based -- How

Modeling Occupant Behaviors

Application

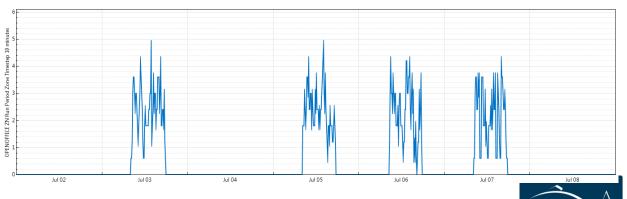
DOE Reference model

Realistic
building
load curve



Our proposed model

Which one is more realistic?

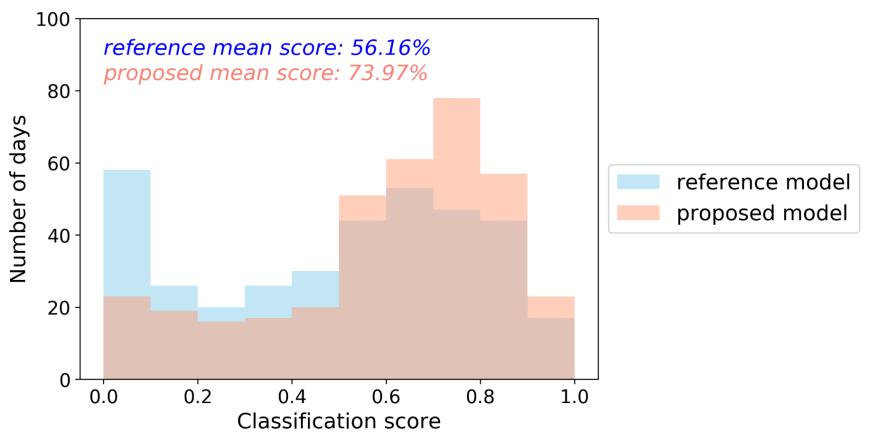


Thoughts and future plans

Data-driven vs. physics-based -- How

Modeling Occupant Behaviors

Results



- Classification score: output of the sigmoid function
 - Approaching to 1: more similar to the measured data
 - Approaching to 0: less similar to the measured data

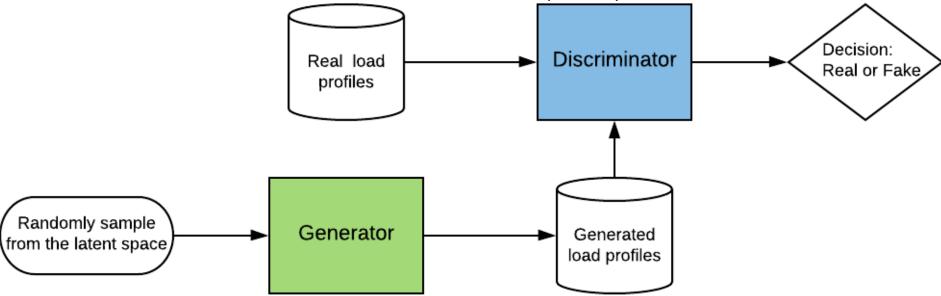
Data-driven Model-free Approach

Motivation

Physics-based model: too many assumptions and inputs

Solution

- Explored data-driven approach
- Generative Adversarial Network (GAN)



Previous work

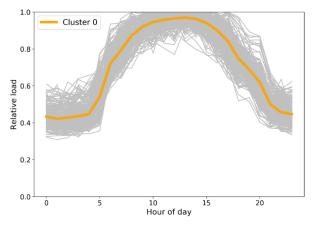
Sensing - Prediction -- Modelling

Thoughts and future plans

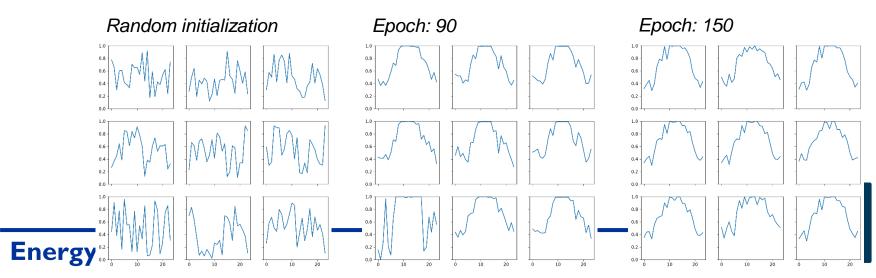
Data-driven vs. physics-based -- How

Data-driven Model-free Approach

Smart meter data



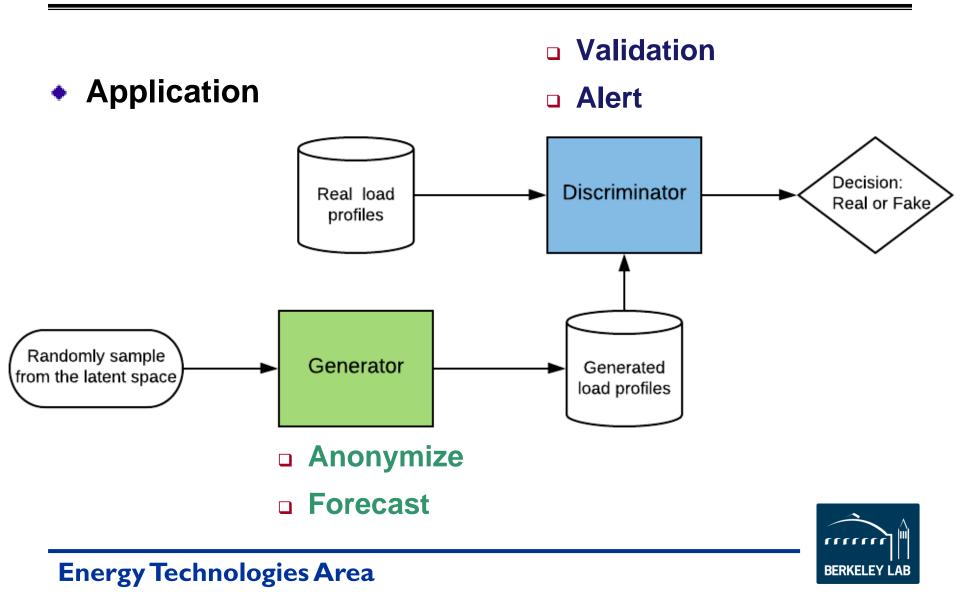
Generated by GAN



Thoughts and future plans

Data-driven vs. physics-based -- How

Data-driven Model-free Approach



Data-driven vs. physics-based -- How

Modelling: summary

Accuracy

Modelling occupant behavior to reduce performance gap

Data-driven

Use GAN to generate building load

Contents

Previous work

- Sensing
- Prediction
- Modeling

Thoughts and future plans

- Data-driven vs. physics-based
- How

Thoughts and future plans

Data-driven vs. physics-based -- How

Physics-based

Pain-point

Every building is unique



Photo courtesy: twincities.com

Photo courtesy: BusinessInsider

Standardized mass production

Energy Technologies Area

Case by case

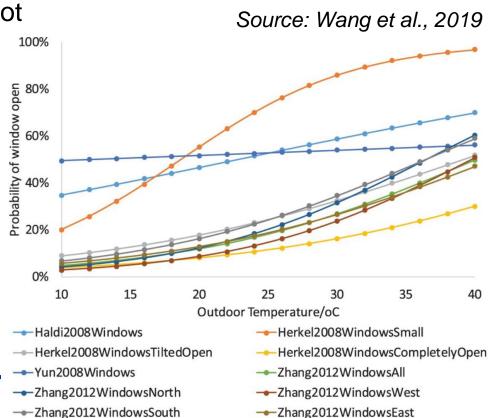
Thoughts and future plans

Data-driven vs. physics-based -- How

Physics-based

Pain-point

- Every building is unique
 - A detailed model might not make economic sense
- Make simplifications
 - Difficult assumptions
 - Uncertainty/error propagation
- Interact with nondeterministic humans



Thoughts and future plans

Data-driven vs. physics-based -- How

Data-driven

Architecture

- Reflect the nature of the problem/building
 - Customize the structure, encoding the nature of physics
 - Customize the *objective function*, based on the problem to be solved

Parameters

- Learned from the data
 - No assumptions are needed
 - Let the data speak

Thoughts and future plans

Data-driven vs. physics-based -- How

Data-driven

Benefits and improvements

- More *flexible model architecture*
- More powerful parameter identification
- Has improved sensing, prediction, and modelling
- What's next?



Thanks for your attention

About myself

Education

Google Scholar

Since 2014

335

				-
2011	Bachelor	Civil Engineering	Tsinghua	
2014	Master	Energy Technology	University of Cambridge	
2017	Ph.D.	Civil Engineering	Tsinghua	

Working Z016-2018 Energy

2016-2018	Energy consultant	World Bank
2017-2018	Postdoc	UC Berkeley
2018-2019	Postdoc	LBNL



All

335

Cited by

Citations

