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Smart Buildings

What?

 Grid interactive

 Flexible and resilient

 Provide grid services

 Occupant responsive

 Human building interaction

 Respond to individual demand

 Minimize unnecessary waste
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Smart Buildings

Sensing

Prediction

Modeling

Optimization

What? How?

Data-

driven

could 

help
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Sensing

You cannot manage what you cannot measure

-- Peter Drucker
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Our work

 Enhance sensing accuracy, cost effectiveness, scalability, 

and address other concerns (e.g. privacy)

Sensing

Previous work                                                                                   Thoughts and future plans

Sensing – Prediction  -- Modelling                                                 Data-driven vs. physics-based  -- How    

Conventional building

 Sensing physical 

parameter only

Smart building

 Occupant related 

sensing
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Outlier Detection

Motivation

 Sensing occupant response

 Outliers in subjective comfort vote undermine accuracy

 Lack of research on detecting outliers in subjective vote data 

Goal

 Proposes an outlier detection framework to automatically flag 

potential outliers in subjective thermal comfort votes

 Key challenge: individual difference vs. outliers

Previous work                                                                                   Thoughts and future plans

Sensing – Prediction  -- Modelling                                                 Data-driven vs. physics-based  -- How    
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Outlier Detection

How?

 Test it on ASHRAE thermal comfort database 

Previous work                                                                                   Thoughts and future plans

Sensing – Prediction  -- Modelling                                                 Data-driven vs. physics-based  -- How    

Cold Hot Cold Hot

Discomfort

Comfort
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Outlier Detection

Contribution

 We proposed a stochastic two-step framework 

• Users could tune contextual attributes, distance measures 

 Could be used for real-time occupant responsive control

• Computationally efficient

• Active, online learning

Wang, Z., Parkinson, T., Li, P., Lin, B. and Hong, T., 2019. The Squeaky wheel: Machine learning for anomaly 

detection in subjective thermal comfort votes. Building and Environment, 151, pp.219-227.

Previous work                                                                                   Thoughts and future plans

Sensing – Prediction  -- Modelling                                                 Data-driven vs. physics-based  -- How    
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Inferring Occupant Counts

Motivation

 Sensing occupant counts 

 Current occupant sensing technologies are expensive or 

labor-intensive

Goal

 Propose a new approach to detect occupant counts 

through Wi-Fi, which is non-intrusive, cost-effective

 Challenge: accuracy vs. privacy

Previous work                                                                                   Thoughts and future plans

Sensing – Prediction  -- Modelling                                                 Data-driven vs. physics-based  -- How    
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How?

 Feature

• Key idea: Cluster the devices based on connection time/duration

• The clustering could be done locally with a simple script (edge 

computing) 

Inferring Occupant Counts

Previous work                                                                                   Thoughts and future plans

Sensing – Prediction  -- Modelling                                                 Data-driven vs. physics-based  -- How    
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Inferring Occupant Counts

How?

 Algorithm

• Random Forest outperforms the other two

• The sequential information does not really help

Previous work                                                                                   Thoughts and future plans

Sensing – Prediction  -- Modelling                                                 Data-driven vs. physics-based  -- How    

Wang, Z., Hong, T., Piette, M.A. and Pritoni, M., 2019. Inferring occupant counts from Wi-Fi data in buildings 

through machine learning. Building and Environment, 158, pp.281-294.
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Sensing: summary

Use data-driven method to

 Sense occupant feedback

• Accurate

 Sense occupant counts

• Accurate

• Cost-effective

• Scalable

• Protect privacy

Previous work                                                                                   Thoughts and future plans

Sensing – Prediction  -- Modelling                                                 Data-driven vs. physics-based  -- How    
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Smart Buildings

Sensing

Prediction

Modeling

Optimization

What? How?
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Prediction

Management is prediction

-- Deming W.E.
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Our work

 Summarize and compare prediction methods

Prediction

Previous work                                                                                   Thoughts and future plans

Sensing  – Prediction -- Modelling                                                 Data-driven vs. physics-based  -- How    

Conventional building

 Schedule, fixed

Smart building

 Prediction, adaptive

𝑦𝑡−1,… , 𝑦𝑡−𝑝, 𝒙𝒕−𝟏, … , 𝒙𝒕−𝒒

𝑦𝑡

𝑦𝑡−1,… , 𝑦𝑡−𝑝 𝑦𝑡
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Case

 Plug load prediction

 Comparison

• Algorithm: ARIMA (Statistical) vs. LSTM (Machine Learning)

• Additional feature: occupant count

 Baseline: naïve persistent method

Finding

 LSTM with occ outperforms

Implication

 Select machine learning

 Add relevant feature

Prediction: Method

Wang, Z., Hong, T. and Piette, M.A., 2019. Predicting plug loads with occupant count data through a deep learning approach. 

Energy, 181, pp.29-42.

Previous work                                                                                   Thoughts and future plans

Sensing  – Prediction -- Modelling                                                 Data-driven vs. physics-based  -- How    
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Prediction: Why ML outperforms

Previous work                                                                                   Thoughts and future plans

Sensing  – Prediction -- Modelling                                                 Data-driven vs. physics-based  -- How    

𝑦𝑡 = 𝛼1𝑦𝑡−1 +⋯+ 𝛼𝑝𝑦𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 +⋯+ 𝜃𝑞𝜀𝑡−𝑞

AR terms MA terms

Regression 

based

Neural network 

based

• Each neuron is a 

linear regression plus 

activation function

• Could capture any 

form of relation 

theoretically
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Problems

 Adding relevant feature is helpful

 In real-time prediction, the input feature is also predicted, 

which unavoidably has errors

Prediction under Uncertainty

Previous work                                                                                   Thoughts and future plans

Sensing  – Prediction -- Modelling                                                 Data-driven vs. physics-based  -- How    
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Prediction under Uncertainty

Which approach is more robust to input uncertainty

Previous work                                                                                   Thoughts and future plans

Sensing  – Prediction -- Modelling                                                 Data-driven vs. physics-based  -- How    

Statistical ML

Shallow 

ML

Deep 

learning
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Prediction under Uncertainty

Case

 Building load prediction

 Compare XGBoost (shallow) vs. LSTM (deep)

Finding

 Without input uncertainty: shallow model outperforms

 With input uncertainty: deep model outperforms

Prediction result Error: CV(RMSE)

Previous work                                                                                   Thoughts and future plans

Sensing  – Prediction -- Modelling                                                 Data-driven vs. physics-based  -- How    
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Prediction under Uncertainty

Implications

 Uncertainty needs to be considered 

 Deep learning is recommended 

 The model is recommended to be trained using the 

forecasted (uncertain) weather data

Previous work                                                                                   Thoughts and future plans

Sensing  – Prediction -- Modelling                                                 Data-driven vs. physics-based  -- How    
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Prediction: Summary

Accuracy

 ML outperforms statistical approach

Uncertainty

 Deep model is more robust to input uncertainty

 Expose model to uncertainty during training stage

Previous work                                                                                   Thoughts and future plans

Sensing  – Prediction -- Modelling                                                 Data-driven vs. physics-based  -- How    
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Smart Buildings

Sensing

Prediction

Modeling

Optimization

What? How?
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Modelling

All models are wrong, but some are useful

-- George Box



Energy Technologies Area

Modeling

Previous work                                                                                   Thoughts and future plans

Sensing  – Prediction  -- Modelling Data-driven vs. physics-based  -- How    

Problem

 Gap between model and reality

Our work

 Improve modelling accuracy: consider occupant behaviors

 Data-driven approach

Conventional building

 Feedback control

Smart building

 Model-based 

Feedforward control
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Modeling Occupant Behaviors (OB)

Motivation

 OB: major source for performance gap

• Fixed schedule vs. dynamic, stochastic

 Need new OB modelling tools

Tool developments

 Developed Buildings.Occupants, and open-sourced with 

Modelica Buildings Library

• Simulate occupancy, lighting, windows, blinds, heating and 

thermostat behaviors in office and residential buildings

• Include 34 models in the current version

Wang, Z., Hong, T. and Jia, R., 2019. Buildings. Occupants: a Modelica package for modelling 

occupant behaviour in buildings. Journal of Building Performance Simulation, 12(4), pp.433-444.

Previous work                                                                                   Thoughts and future plans

Sensing  – Prediction  -- Modelling Data-driven vs. physics-based  -- How    
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Modeling Occupant Behaviors

Application

 Realistic 

building 

load curve

Baseline: 

DOE reference 

models

Previous work                                                                                   Thoughts and future plans

Sensing  – Prediction  -- Modelling Data-driven vs. physics-based  -- How    
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Modeling Occupant Behaviors

Application

 Realistic 

building 

load curve

Previous work                                                                                   Thoughts and future plans

Sensing  – Prediction  -- Modelling Data-driven vs. physics-based  -- How    

DOE Reference model

Our proposed model

Which one is 

more 

realistic?
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Modeling Occupant Behaviors

Results

• Classification score: output of the sigmoid function
• Approaching to 1: more similar to the measured data

• Approaching to 0: less similar to the measured data

Previous work                                                                                   Thoughts and future plans

Sensing  – Prediction  -- Modelling Data-driven vs. physics-based  -- How    
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Data-driven Model-free Approach

Motivation

 Physics-based model: too many assumptions and inputs

Solution

 Explored data-driven approach

 Generative Adversarial Network (GAN)

Previous work                                                                                   Thoughts and future plans

Sensing  – Prediction  -- Modelling Data-driven vs. physics-based  -- How    
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Data-driven Model-free Approach

Random initialization Epoch: 90 Epoch: 150

Previous work                                                                                   Thoughts and future plans

Sensing  – Prediction  -- Modelling Data-driven vs. physics-based  -- How    

Smart meter data

Generated by GAN
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Data-driven Model-free Approach

Application

Previous work                                                                                   Thoughts and future plans

Sensing  – Prediction  -- Modelling Data-driven vs. physics-based  -- How    

 Anonymize 

 Forecast

 Validation

 Alert
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Modelling: summary

Accuracy

 Modelling occupant behavior to reduce performance gap

Data-driven

 Use GAN to generate building load

Previous work                                                                                   Thoughts and future plans

Sensing  – Prediction  -- Modelling Data-driven vs. physics-based  -- How    
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Physics-based

Pain-point

 Every building is unique

Photo courtesy: 

twincities.com

Photo courtesy: 

BusinessInsider

Case by case Standardized mass production

Previous work                                                                                   Thoughts and future plans

Sensing  – Prediction  -- Modelling                                                 Data-driven vs. physics-based  -- How    
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Physics-based

Pain-point 

 Every building is unique

• A detailed model might not 

make economic sense

 Make simplifications

• Difficult assumptions 

• Uncertainty/error 

propagation

 Interact with non-

deterministic humans

Previous work                                                                                   Thoughts and future plans

Sensing  – Prediction  -- Modelling                                                 Data-driven vs. physics-based  -- How    

Source: Wang et al., 2019
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Data-driven

Architecture 

 Reflect the nature of the problem/building

• Customize the structure, encoding the nature of physics 

• Customize the objective function, based on the problem to be 

solved

Parameters

 Learned from the data

• No assumptions are needed

• Let the data speak

Previous work                                                                                   Thoughts and future plans

Sensing  – Prediction  -- Modelling                                                 Data-driven vs. physics-based  -- How    
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Data-driven

Benefits and improvements

 More flexible model architecture

 More powerful parameter identification

Has improved sensing, prediction, and modelling

What’s next?

Previous work                                                                                   Thoughts and future plans

Sensing  – Prediction  -- Modelling                                                 Data-driven vs. physics-based  -- How    
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Plan

LDRD 

project 

starting 

soon

Sensing

Modelling

Prediction

Optimization

• Occupant responsive

• Grid interactive

Previous work                                                                                   Thoughts and future plans

Sensing  – Prediction  -- Modelling                                                 Data-driven vs. physics-based  -- How
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Thanks for your attention
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About myself

Education

Working

Google Scholar

2011 Bachelor Civil Engineering Tsinghua

2014 Master Energy Technology University of 

Cambridge

2017 Ph.D. Civil Engineering Tsinghua

2016-2018 Energy consultant World Bank

2017-2018 Postdoc UC Berkeley

2018-2019 Postdoc LBNL


