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Including allegations of insufficient power system modeling

“all loads, generation (sited before the LOADMATCH runs and placed precisely
where existing generation resides), and storage are summed in a single place.
Therefore, those authors do not perform any modeling or analysis of transmission.
As a result, their analysis ignores transmission capacity expansion, power flow, and
the logistics of transmission constraints (S/ Appendix, section S2.6).

Similarly, those authors do not account for operating reserves, a fundamental
constraint necessary for the electric grid. Indeed, LOADMATCH used inref. 11 is a
simplified representation of electric power system operations that does not capture
requirements for frequency regulation to ensure operating reliability (additional
details are in S| Appendix, section S3).
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Including allegations of insufficient power system modeling, cont

“Furthermore, the model is fully deterministic, implying perfect foresight about the
electricity demand and the variability of wind and solar energy resources and
neglecting the effect of forecast errors on reserve requirements (25). In a system
where variable renewable resources make up over 95% of the US energy supply,
renewable energy forecast errors would be a significant source of uncertainty in the
daily operation of power systems. The LOADMATCH model does not show the
technical ability of the proposed system from ref. 11 to operate reliably given the
magnitude of the architectural changes to the grid and the degree of uncertainty
imposed by renewable resources.”
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While academics debate, grid operators are managing

aver-increasing amounts of variable renewable energy on the grie

Wind breaks a new record in
Southwest Power Pool

CURTIS WALTER
APRIL 26, 2019

This past weekend, wind power set a new record in the Southwest =] Print
Power Pool (SPP), the regional grid that covers most of the midwestern

United States. On April 21, wind’s share of power generation reached(©6.5 percent
/\| for the region. According to SPP, wind provided 14,063 megawatts (MW) of 3
BERKELEY LAB ENERGY TEC
J 21,148 MW total load.




30) is studying how to operate with
of variable renewable generation
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MISO’s study considers four grid integration topics

Resource Adequacy

Operating Reliability (Steady-State)

Ability to operate the system within acceptable voltage and thermal limits

Operating Reliability (Dynamics)

Ability to maintain stable frequency and voltage, and meet system
performance requirements
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Today, we will introduce these topics
On Friday, we will describe MISO’s findings

Operating Reliability Resource Adequacy

(Steady-State)
Operating R?hablhty resolution of existing
(Dynamics) renewables integration
AGC signal studies
synchro-phasors : service restoration
| dynamic wu%d and solar | Fouta S
A .. lay system output variation | (outag _
protective relay | ' | /day-ahead planning for carbon
_ / OReration  response i | /scheduling emission goals
high-frequency, | A (stability) hour-abhdil | ,
switching devices |/ . g / demand ey W :
/ o?e a‘h.‘c. cycle V' responsa? sched|il{|[|ng .'I T&D planning
T T T T = \' T 1 ' lr T . T 4. T | T T T T |
10° 103 100 10° 108 10° seconds
millisecond second minute hour day year decade

Source: A.von Meier, "Challenges to the Integration of Renewable Resources at High System Penetration," California
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http://uc-ciee.org/downloads/CEC-500-2014-042.pdf

Intro to Load Frequency Control

Alexandra “Sascha” von Meier

Faculty Scientist, Lawrence Berkeley National Laboratory, Grid Integration Group
Adjunct Professor, Dept. of Electrical Engineering and Computer Science, UC Berkeley
Director, Electric Grid Research, California Institute for Energy and Environment
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How do we keep power generated = power demanded?

Multiple time scales:
1. Economic decisions: Unit Commitment, Economic Dispatch
Day-ahead & Hour-ahead markets

2. Fast operational decisions: Load following, frequency regulation
services; Automatic Generation Control (AGC) signal

3. Built-in mechanical feedback loops: Generator droop control

4. Built-in electromechanical stability: Rotational inertia

Think about it: This had to work before there were computers,
or even reliable communications...
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Power balance means
constant rotational frequency
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Achieving a 100%
Renewable Grid

Operatjng Electric WHAT DOES IT MEAN TO ACHIEVE A 100%

renewable grid? Several countrics already meet of come
1 close to achieving this L. kceland, for example, sup-
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figure 6. The representation of an electric power system showing tight coupling of
synchronous generators and smart VRE systems and loose coupling of induction mo-
tors/generators.
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FIGURE 12.1 Voltage regulator and turbine-governor controls for a steam-turbine generator




Does not rotate
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High-pressure
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The Droop Curve

assigns a slope and desired power setting to the generator governor
so it will increase power if frequency is slow, decrease power when frequency is high

FIGURE 12.8 Frequency

(per unit)
Steady-state frequency— \
power relation for a AP, set to give
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from Glover, Overbye & Sarma, Electric Power Systems Analysis



Step 1: Primary frequency control
Operating point moves up or down the droop curve
This stabilizes system frequency by making generation = load

FIGURE 12.8 Frequency
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Steady-state frequency— A
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Step 1: Primary frequency control
Operating point moves up or down the droop curve
This stabilizes system frequency by making generation = load

FIGURE 12.8 Frequency

(per unit)
Steady-state frequency— A
power relation for a AP, set to give
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Step 2: Supplementary frequency regulation
slowly changes set-points to return frequency to nominal value while
continuing to meet the new load condition

FIGURE 12.8 Frequency

(per unit)
Steady-state frequency— A
power relation for a AP, set to give
turbine-governor 1.04 f = 1.0 per unit
at p,, = 1.0 per unit
1.03 |-
1.02 Slope = —R = AAT;; = —0.04 per unit
1.01
o l | Turbine mechanical
: > power output
02 04 408 TO {ber-unih
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8.98 [= Ap. set to give
f = 1.0 per unit at
097 P = 0.50 per unit

from Glover, Overbye & Sarma, Electric Power Systems Analysis
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(or frequency-responsive [Generators (or load) on Tertiary Frequency Control
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Load Frequency Control

How to decide what new setting to choose for each generator?

Take into account:

* how much contribution is desired from each generator
based on economic considerations

e desired and undesired tie-line flows (transfers) between
adjacent balancing authorities.

Can a person do this?
Not really.

Automatic Generation Control (AGC) includes

Load Frequency Control and Economic Dispatch.

AGC signals are sent to generators in several-second intervals, whether
for purposes of frequency control or economics.



Regions and
Balancing Authorities

™ SERC
FRCC

Note: The highlighted area between SPP
and SERC denotes overlapping Regional
area boundaries: For example, some load
serving entities participate in one Region
and their associated transmission
owner/operators in another:

As of April 12, 2011
Submit changes to balancing@nerc.com

Dynamically
"""" Controlled
Generation

*Bubble size is determined
by acronym width



The grid is stable...

Key: Rotating mass in large generators = inertia
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...except when it isn’t

Figures show the frequency change as a result of the sudden loss of a large amount of
generation in the Southern WECC
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Mechanical model and photo by Alex McEachern
Rubber shaft illustrates voltage “twist” as power is transferred
among motors & generators



Real power transfer between generators

the small phase angle o

okt between two generator buses
Unit 2 S drives a.c. power flow
Voltage :
! Vils ..
P = X sin 1,
voltage phase
armature stronger ang|e
(magnetic) armature reaction 6
reaction .
\ reference \' \
R il 7 d 6 =0 & g
otation
stronger
turbine push

turbine
push

Unit 2 Unit 1

power flows from Unit 1 toward Unit 2



Voltage phase angle profile April 16th 2016, 10:20:37 pm
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Phase angle and frequency describe stability in the a.c. grid

* load-frequency response (droop): when P, # P_ _frequency o changes

* magnetic coupling between generators

rotational inertia

2

(LN

8 ol

.ﬂ_‘ 1l

damped harmonic oscillation
seen in voltage phase angle

generator swing equation

2
Md—f =P, P,
ds



How do we keep power generated = power demanded?

Multiple time scales:
1. Economic decisions: Unit Commitment, Economic Dispatch
Day-ahead & Hour-ahead markets

2. Fast operational decisions: Load following, frequency regulation
services; Automatic Generation Control (AGC) signal

3. Built-in mechanical feedback loops: Generator droop control

4. Built-in electromechanical stability: Rotational inertia
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I Sacramento MuniciBal
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I Nevada Energy

B Los Angeles Department of
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[ Imperial Irrigation District (IID)
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Valley Electric
joining the ISO
in 2013

Balancing Authorities
in California



Load Frequency Control

-1 -1

Generation Generation Generation
60 60 60
Load Load Load
In-flow equals out-flow, Out-flow less than in-flow, In-flow less than out-flow,

frequency stable at 60 Hz frequency rises above 60 Hz frequency falls below 60 Hz



Generation J

Frequency Range During

Frequency Range Following
Normal Operation

a Major Disturbance

60.02 mmm-.
SBCOanry \l/so_m’ \\ —’____-—" 60.10
and Tertiary 60 ) = 60 28.85
| on @ 59,90
o 5980 | iy
99.70 Control
59.60
59.50 " Under-Frequency
Load Shedding

Load

Primary frequency control: stop the water level from rising or falling

Secondary frequency control (supplementary regulation): return to desired level



