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Conventional Building Modeling and Simulation
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Equation-Based Modeling Language

Can you write a C code to solve these equations in 1 minutes?

_ dx d _
(1+ 0.5sin(y)) o + — = asin(t)

dt

x —y =e %% cos(y)

You can do it using equation-based modeling language in 1 minute:

model DAEexample

Real x(start = 0.9, fixed=true)

Real y(fixed=false) ;

parameter Real a=2;

equation

(1 + 0.5*sin(y)) *der(x) + der(y) = a*sin(time) ;
x-y = exp(-0.9*x) *cos (y) ;

end DAEexample;



Equation-Based Building Modeling and Simulation
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Modelica Buildings Library
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Optimal Control for Chilled Water Plants

In FY 2012, Department of Defense spent $3.8 billion to power, heat
and cool buildings (DoD 2013).

DoD ESTCP Project: Optimization operation efficiency: Integrating
energy information systems (EIS) and model-based diagnostics

Period: 2012-2016

Project Team:

- Lawrence Berkeley National Lab
- University of Miami

- IBM

Project Site: __
 Washington Navy Yard
 US Naval Academy 8



Studied Chiller Plant

3x970 Ton chillers

Bypass Tewnorm =26.11 °C (79°F)
COOIing ‘L _: é{q | wa,norm =25 °C (770F)
C XD } Podf——| —_— e M_@—4_
Tower 3 | | 7D _
_ ——o—()——
Cooling v | Chiller 3
OO e | o} —at—] -] 4D°<J—©—
Tower 2 | | 7D .
| | - Primary Pumps
Cooling y— | | Chiller 2
Tower 1 S N e
ow ] Ol .
) | Chiller 1
W — |
|
»
P— — —
Condenser Water Pumps
Huang, Zuo, Sohn 2016, Applied Energy 9

Huang, Zuo, Sohn 2017, Building and Environment



Condenser Water Return Temp Set Point Optimization

min (OB|t°+At) = min ( [ R (0P (o), TR(D), S(to))) for t € [ty, ty + At),

subject to m5(1“0) € OPyqiiq

f2(0P(ty), IP(¢),S(ty)) = 0
f3(0P(to), IP(t),5(ts)) < 0

Specialization for
the condenser water
return temp set point

optimization

' 0—P>(to) — {Tcw,set(to)}’
HIP(E) = {QF (), Ty, (D)},

: OP valid = {Tcw,set|Tcw,set,L < Tcw,set < Tcw,set,H }’

Tew set: CONdenser water return temp set point
Q(t) : cooling energy demand
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Work Flow of Model Predictive Control for Chillers
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Simulation Model: System Level

Supervisor Controller
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Simulation Model: Chiller Subsystem

Supervisor Controller
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Simulation Model: Chiller Subsystem

Supervisor Controller
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Simulation Model: Supervisory Control
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Energy Saving Potential

Optimization Energy Saving Energy Saving Computing
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Huang and Zuo, 2014, ASHRAE/IBPSA-USA Conference;
Huang, Zuo and Sohn, 2015, Building Simulation Conference;
Huang, Zuo and Sohn, 2016, Journal of Applied Energy
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Optimization Based on Physical Model
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Optimization Based on

Bayesian Network Model T
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Optimization Based on
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Energy and Water Efficient Hotel
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Convectional System

Heat Pump for Space

_ _ Domestic Hot Water System
Cooling and Heating
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Weather in Miami

Miami, US:
ASHRAE Climate Zone 1A (Hot and Humid)
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Cooling Demands vs Hot Water Demands

Typical Day of Miami Weather
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State 1. Large Demands for Heating and HW
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State 7: Demand Large for Cooling & Low for HW
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Heat Recovery System Model

Supervisory Control
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Domestic Hot Water Sub-System Model
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Preliminary Results: A Challenging Day
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Beyond Energy: Water
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Modeling of Combined Energy and Water System
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Smart and Sustainable Community Virtual Testbed
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Historic Green Village, Anna Maria Island, Florida

The Historic Green Village is an existing Net Zero Energy Community.
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Historic Green Village, Anna Maria Island, Florida

Energy subsystem

O Electric energy subsystem
O Water-source heat pump
O Solar thermal domestic hot water
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System Modeling
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System Modeling: Physical Model of Solar PV Subsystem
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Preliminary Results: Prediction of PV Power Generation

>Eane > Measurement
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Conclusion

o Our real-world projects have demonstrated the great
potential of Modelica on controls optimization and
complex system design.

s« Combination of Modelica models with other tools can be a
practical solution for real-world applications.
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Future Research

» Extend the support of Modelica-based tools for
convectional and advanced applications for buildings

s« The Moonshot Research:
Smart, Sustainable, and Resilient Cities

'Future Directions — Metro Energy 5 P

Lab Initiative
A DOE BIG IDEA

+ Basic research to develop Energy
Science of Cities with Models and new
Measurements

4 Applied research to
a Increase energy efficiency
o Reduce GHG emissions
a Improve resiliency
o Enhance economic viability
4 Optimized energy planning and

operations, new technologies,
integrated systems
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Energy Efficient Data Center Cooling

Improving Data Center Energy Efficiency through End-to-
End Cooling Modeling and Optimization (10/16-11/19),
DOE, $522K, collaborate with LBNL and Schneider Electric

1

Feature 1: Optimization of Feature 2: Optimization of
Cooling System Operation Airflow Management

- 7
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for Cooling System Regression Model for
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[Module 3: Optimization Engine for Cooling . . }

Optimization GenOpt =~
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i S

Feature 3: Simultaneous Optimization of Airflow
Management and Cooling Systems




Smart, Sustainable and Connected Community

(9/16-8/19), National
Science Foundation, $1.4M, collaborate with Virginia Tech.

A community powered by renewable energy, moved by automatic-driving electric
vehicles, and connected with seamless wireless network.

o,

Zero-Traffic for transportation network, Zero-Congestion for communication
network, and Zero-Outage for energy network

Big data analytics using real-world data, e.g. Building Performance Database from
LBNL

Virtual Testbed: Modelica Models
Physical Testbed: Historic Green Village
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Resilient Costal Cities

 CRISP Type 1: Collaborative Research: A Human-Centered
Computational Framework for Urban and Community

. Design of Resilient Coastal Cities (01/17-12/18), National
Science Foundation, $500K, collaborate with Virginia Tech.

Identify key tvpologies morphologies and socio-

o —— 0 Computational framework for infrastructure
network, social-economic characteristics,
and urban design based on Modelica and

- Fqnc;[flon?l Moc upJn_terface

| 'H.’
b

I. Urban and
Community Design;
main tyvpologies
and connecti

I1. Engineering:
resilience analysis
of infrastructure
(components

nnnnnn

IT1. Computer
Science: network

simulation and
optimization

Inform the vrban and
community designer

Provide meta-models for
simulation and optimization



Smart City in Yucanta, Mexico
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A smart city designed from the ground up, built on
the experience of leaders in urbanism and technology,

as a prototype of the future.
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