

From Buildings to Cities: Research and Development of Modelica-based Technique for Real-world Applications

Wangda Zuo, Ph.D.

Department of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, Florida, USA W.Zuo@miami.edu 11/15/2016

Presentation at Lawrence Berkeley National Laborator OF MIAMI

UNIVERSITY

Outline

Brief Introduction of Modelica

Real-World Applications:

- Modeled-based Chilled Water Plan Optimization
- Energy and Water Efficient Hotel
- Net Zero Energy Community

Conclusion and Future Research:

- Energy Efficient Data Center Cooling
- Smart and Connected Community
- Resilient Coast City Design

Conventional Building Modeling and Simulation

Physical Equipment

Physical Models

etaCar · TEvanominal

Numerical Algorithms

int iErr;

// Declare local variable holding

vector vY; vector vWT;	<pre>// Input vector // Input vector</pre>
// There are 10	rows of data in

11 nPts = 10;

// There are 3 independent variab nTdx = 3;

Code

Results

System Model

Equation-Based Modeling Language

Can you write a C code to solve these equations in 1 minutes?

$$(1+0.5\sin(y))\frac{dx}{dt} + \frac{dy}{dt} = a\sin(t)$$
$$x - y = e^{-0.9x}\cos(y)$$

You can do it using equation-based modeling language in 1 minute:

```
model DAEexample
Real x(start = 0.9,fixed=true);
Real y(fixed=false);
parameter Real a=2;
equation
(1 + 0.5*sin(y))*der(x) + der(y) = a*sin(time);
x-y = exp(-0.9*x)*cos(y);
end DAEexample;
```

Equation-Based Building Modeling and Simulation

Modelica Buildings Library

http://simulationresearch.lbl.gov/modelica

Wetter, Zuo, Nouidui, Pang, 2014, Journal of Building Performance Simulation; Zuo, Wetter, Tian, Li, et al, 2015, Journal of Building Performance Simulation;

Outline

- Brief Introduction of Modelica
- Real-World Applications:
 - Modeled-based Chilled Water Plan Optimization
 - Energy and Water Efficient Hotel
 - Net Zero Energy Community
- Conclusion and Future Research:
 - Energy Efficient Data Center Cooling
 - Smart and Connected Community
 - Resilient Coast City Design

Optimal Control for Chilled Water Plants

In FY 2012, Department of Defense spent **\$3.8 billion** to power, heat and cool buildings (DoD 2013).

DoD ESTCP Project: Optimization operation efficiency: Integrating energy information systems (EIS) and model-based diagnostics

Period: 2012-2016

Project Team:

- Lawrence Berkeley National Lab
- University of Miami
- IBM

Project Site:

- Washington Navy Yard
- US Naval Academy

Studied Chiller Plant

Huang, Zuo, Sohn 2016, Applied Energy Huang, Zuo, Sohn 2017, Building and Environment

$$\begin{split} \min\left(OB\big|_{t_{0}}^{t_{0}+\Delta t}\right) &= \min\left(\int_{t_{0}}^{t_{0}+\Delta t} f_{1}\big(\overrightarrow{OP}(t_{0}),\overrightarrow{IP}(t),\overrightarrow{S}(t_{0})\big)\right) \text{ for } t \in [t_{0},t_{0}+\Delta t) ,\\ subject to & \overrightarrow{OP}(t_{0}) \in OP_{valid} \\ f_{2}\big(\overrightarrow{OP}(t_{0}),\overrightarrow{IP}(t),\overrightarrow{S}(t_{0})\big) &= 0 \\ f_{3}\big(\overrightarrow{OP}(t_{0}),\overrightarrow{IP}(t),\overrightarrow{S}(t_{0})\big) &\leq 0 \end{split}$$
$$\begin{aligned} OB\big|_{t_{0}}^{t_{0}+\Delta t} &= E_{ch}\big|_{t_{0}}^{t_{0}+\Delta t} + E_{tw}\big|_{t_{0}}^{t_{0}+\Delta t} ,\\ \overrightarrow{OP}(t_{0}) &= \{T_{cw,set}(t_{0})\}, \\ \overrightarrow{IP}(t) &= \{\dot{Q}^{P}(t), T_{wb}^{P}(t)\}, \\ OP_{valid} &= \{T_{cw,set}\big|T_{cw,set,L} \leq T_{cw,set} \leq T_{cw,set,H}\}, \end{aligned}$$

 $T_{cw,set}$: condenser water return temp set point Q(t): cooling energy demand

Work Flow of Model Predictive Control for Chillers

Simulation Model: System Level

Simulation Model: Chiller Subsystem

Simulation Model: Chiller Subsystem

Simulation Model: Supervisory Control

State Machine

Modelica Model

Energy Saving Potential

Optimization Methods	Energy Saving w. Faulty Tower	Energy Saving w. Normal Tower	Computing Hours
Hourly Exhaustive Search	1.76%	10.04%	33.7
Hourly GPS	1.74%	10.02%	23.8
Daily GPS	1.14%	9.49%	1.2
Energy Saving	64-99 MWh	483-511 MWh	
Cost Saving	\$8,320-\$12,870	\$62,790-\$66,430	

GPS: Hooke Jeeves Generic Pattern Search

Huang and Zuo, 2014, ASHRAE/IBPSA-USA Conference; Huang, Zuo and Sohn, 2015, Building Simulation Conference; Huang, Zuo and Sohn, 2016, Journal of Applied Energy

Optimization Based on Physical Model

Optimization Based on Regression Model

Huang, Zuo, Sohn, 2015, Building Simulation Conference Huang, Zuo, Sohn, 2016, SimBuild Conference

Optimization Based on Regression Model

Huang, Zuo, Sohn, 2015, Building Simulation Conference Huang, Zuo, Sohn, 2016, SimBuild Conference

Outline

Brief Introduction of Modelica

Real-World Applications:

- Modeled-based Chilled Water Plan Optimization
- Energy and Water Efficient Hotel
- Net Zero Energy Community

Conclusion and Future Research:

- Energy Efficient Data Center Cooling
- Smart and Connected Community
- Resilient Coast City Design

Energy and Water Efficient Hotel

Grand Beach Hotel, Surfside, Miami Beach, FL, USA 21

Convectional System

Heat Pump for Space Cooling and Heating

Domestic Hot Water System

Weather in Miami

Miami, US: ASHRAE Climate Zone 1A (Hot and Humid)

Cooling Demands vs Hot Water Demands

Typical Day of Hotel Guests

State 1: Large Demands for Heating and HW

Heat Pump for Space Heating

Heating for Domestic Hot Water

State 7: Demand Large for Cooling & Low for HW

Supervisory Control

Domestic Hot Water Sub-System Model

Preliminary Results: A Challenging Day

February 12th

7: Cooling Tower Only

- 6: Heat Recovery + Cooling Tower
- 5: Heat Recovery Only
- 4: None
- 3: Main Boiler
- 2: Main Boiler + Auxiliary Boiler
- 1: Main Boiler, Auxiliary Boiler Separately

Miranda et al, 2015, Modelica Conference

Beyond Energy: Water

Modeling of Combined Energy and Water System

Outline

Brief Introduction of Modelica

Real-World Applications:

- Modeled-based Chilled Water Plan Optimization
- Energy and Water Efficient Hotel
- Net Zero Energy Community
- Conclusion and Future Research:
 - Energy Efficient Data Center Cooling
 - Smart and Connected Community
 - Resilient Coast City Design

Smart and Sustainable Community Virtual Testbed

Enhanced Situational Awareness

"What if" Design evaluation

Smart Technologies

Economic & Cost

Real-time **Operation** management

Model Predictive Control

Fault Detection and Diagnosis

Historic Green Village, Anna Maria Island, Florida

The Historic Green Village is an existing Net Zero Energy Community.

Historic Green Village

Historic Green Village, Anna Maria Island, Florida

Energy subsystem

- □ Electric energy subsystem
- □ Water-source heat pump
- □ Solar thermal domestic hot water

System Modeling

System Modeling: Physical Model of Solar PV Subsystem

Preliminary Results: Prediction of PV Power Generation

Model	R-square
Physical	
ANN	

Coefficient of Determination

$$R^{2} = 1 - \frac{\sum_{i}^{pnum} (\dot{Q}_{p,i} - \dot{Q}_{m,i})}{\sum_{i}^{pnum} (\overline{\dot{Q}_{m}} - \dot{Q}_{m,i})}$$

where $\dot{Q}_{p,i}$ and $\dot{Q}_{m,i}$ are the *i*th predicted and measured cooling load, *pnum* is the prediction number, and $\overline{\dot{Q}_m}$ is the mean value of $\dot{Q}_{m,i}$.

Prediction by ANN model and real energy production of PVs in building Sears(D) from August 25, 2014 to August 31, 2014

Prediction by physical model and real energy production of PVs in building Sears(D) in winter and summer of 2014: (a) in February, (b) in August.

Outline

Brief Introduction of Modelica

Real-World Applications:

- Modeled-based Chilled Water Plan Optimization
- Energy and Water Efficient Hotel
- Net Zero Energy Community
- Conclusion and Future Research:
 - Energy Efficient Data Center Cooling
 - Smart and Connected Community
 - Resilient Coast City Design

Conclusion

- Our real-world projects have demonstrated the great potential of Modelica on controls optimization and complex system design.
- Combination of Modelica models with other tools can be a practical solution for real-world applications.

Future Research

 Extend the support of Modelica-based tools for convectional and advanced applications for buildings

- The Moonshot Research:
 - Smart, Sustainable, and Resilient Cities

Energy Efficient Data Center Cooling

Improving Data Center Energy Efficiency through End-to-End Cooling Modeling and Optimization (10/16-11/19), DOE, \$522K, collaborate with LBNL and Schneider Electric

Smart, Sustainable and Connected Community

BIGDATA: Collaborative Research: IA: Big Data Analytics for Optimized Planning of Smart, Sustainable, and Connected Communities (9/16-8/19), National Science Foundation, \$1.4M, collaborate with Virginia Tech.

A community powered by renewable energy, moved by automatic-driving electric vehicles, and connected with seamless wireless network.

Zero-Traffic for transportation network, Zero-Congestion for communication network, and Zero-Outage for energy network

Big data analytics using real-world data, e.g. **Building Performance Database** from LBNL

Virtual Testbed: Modelica Models Physical Testbed: Historic Green Village

Resilient Costal Cities

ŃSF

CRISP Type 1: Collaborative Research: A Human-Centered Computational Framework for Urban and Community Design of Resilient Coastal Cities (01/17-12/18), National Science Foundation, \$500K, collaborate with Virginia Tech.

Computational framework for infrastructure network, social-economic characteristics, and urban design **based on Modelica and Functional Mockup Interface**

City of Miami Beach for case study

Smart City in Yucanta, Mexico

ENCITI

The Internet of Living

Acknowledgment

Ph.D. Students:

Sen Huang, Wei Tian, Reymundo Miranda, Thomas Sevilla, Yunyang Ye, Yangyang Fu **Undergraduate/Master Students:**

Dan Li, German Barrios, Carolina A. Malara, Bernardo S. Benzecry, Ana Cohen, Lonching Eng, Drake Peterson, Clay Wyda, Isabella G. Ver

Visiting Scholars:

Guifang Shao, Changjiang Jiang, Tiejun Li, Dongbo Pan, Dong He, Guang Zhou

Collaborators at LBNL:

Michael Wetter, Thierry Nouidui, Michael Sohn, Marco Bonvini, Jessica Grandson, Mary Ann Piette, Guanjing Lin, Janie Page, Xiufeng Pang, Oren Schetrit, Eleanor Lee, Andrew McNeil and many other colleagues

Sponsors:

National ScienceDepartmentFoundationof Defense

Department of Defense

Department of

Homeland Security

ASHRAE

JPMorgan

Chase

University of Miami

Thank You!

Wangda Zuo, Ph.D.

Department of Civil, Architectural and Environmental Engineering University of Miami,

Coral Gables, Florida, USA

W.Zuo@miami.edu

Website: www.coe.miami.edu/zuo

