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Executive Summar:

End-use electricity demand forecasts play a critical role in resource planning approaches
that actively consider both supply- and demand-side oplions to meet customer energy
service needs. Yet, in order to forecast peak demands by end use, ulility and state
planners have had to rely on both simulated and borrowed end-use and class load
research data. This reliance has introduced additional uncertainty into an already
complicated resource planning process, as questions arise regarding the veracity of these
inputs, The data now available from recent end-use metering projects holds the promise
of reducing these uncertainties and thereby improving the planning process and its
outcomes.

This report summarizes findings from a umque project to improve the end-use electricity
load shape and peak demand forecasts made by the Pacific Gas and Electric Company
(PG&L} and the Califorma Energy Commission {CEC). First, the direct incorporation
of end-use metered data into electricity demand forecasting models is a new approach that
has only been made possible by recent end-use metering projects. Second, and perhaps
more importantly, the joinl-sponsorship of this analysis has led to the development of
consistent sets of forecasting model inputs. That 1s, the ability to use a common data base
and similar dala treatment conventions tor some of the forecasting inpuls frees forecasters
to concentrate on those differences (belween their competing forecasts) that stem from
real differences of opinion, rather than differences that can be readily resolved with
better data.

The focus of the analysis 1s residential space cooling, which represents a large and
growing demand in the PG&E service territory. Using five years of end-use metered,
central air conditioner data collected by PG&E from over 300 residences, we developed
consistent sets of new inputs for both PG&E’s and CEC's end-use load shape forecasiing
models. We compared the performance of the new inputs both to the inputs previously
used by PG&E and CEC, and to a second set of new inputs developed to take advantage
of a recently added modeling option to the forecasting model. The lesting criteria
included ability to forecast total daily energy use, daily peak demand, and demand at 4
P.M. (the most frequent hour of PG&E's system peak demand). We also tested Lhe new
inputs with lthe weather data used by PG&E and CEC in preparing their forecasts.

We find that the new inputs developed in this project perform significantly better than
previous inputs used by CLC and generally better than previous inputs used by PG&E.
We also find that, while ihe use of the new forecasting option did sometimes lead to
modest improvements, the additional effort required to take advantage of this option in
forecasting future data is significant and may not be justified by the results,

bt



In tesiing the new inputs with the same weather dara files used by PG&E and CEC in
their forecasts, we verified that the magnitude of polential implementation issues raised
by PG&E and CEC was small and made a simple recommendation to address them.

In the course of the analysis, the project staff, PG&E, and CEC 1dentified several issues
af interest outside the primary focus of the main body of research. We conducted
exploratory investigations for several of these 1ssues. Our findings are summarized as

follows:

=

We considered explicit inclusion of a “heat-storm" variable in models to
allocate annual energy use to days of the year, but concluded that inclusion
1s not warranted, at this time, without a more systematic examination of
related problems associated with forecasting energy use on “peak” days.

We examined metered data collected for heat pumps (which rely on the same
technology as ceniral air conditioners, bul also provide cooling), but conclude
that would be premature to simply add cooling loads from the small sample
of heat pump compressors to those from the much larger sample of central air
conditioners without additional information on the residences and equipment
being monitored.

We developed a separaie set of daily energy models for room air conditioners,
which confirnied our intuitions regarding differences between patterns of
central air conditioner versus room air conditioner energy use. However, the
comparatively smaller sample of room air conditioners precludes us from
drawing definitive conclusions as to the ultimate significance these
difterences.

We examined data from several weather stations and concluded that the
weather station currently used by CEC to model central air conditioning
energy use in the transitional climate region 4 performs better than the two
alternatives considered.

We developed a procedure for systematically evaluating the specification of
binned hourly load shapes and confirmed the appropriateness of current
reliance on dry bulb temperature for this purpose.

We developed separate daily energy models specifically to forecast energy use
on peak days, which indeed perform better than madels developed to forecast
energy use on all days. Nevertheless, we reserve judgement on their
usefulness pending the outcome of a much broader discussion on how the



increased effort [o take advantage of additional sub-models (such as this one}
should be balanced by the other forecasting requirements for load shape
models,

Our analyses jointly suggest that the need for additional research must be predicated on
a systematic assessment of competing load shape forecasting objectives (such as
forecasting systemn peak, hourly load shapes for 12 typical weeks, minimum load
conditions, etc.) in light of the resource constraints faced by the forecasting process. At
that time, the following enhancements should be considered:

1. More systematic examination of daily load shape bins for possible re-
specificalion hased on other forecasting objectives; our exploratory analysis
has led to the development of a framework for this activity.

2. Continued refinement and integration of separate peak day models into the
overall load shape forecasting process; we have demonstrated the potential
value of this approach.

3. Sample weight development based on consideration of current forecasting
conventions for the specification of the population (e.g., regions versus rate

classes): all analyses undertaken to date have been based on un-weighted data.

4. Forecasting weather data file development based on capturing specific
meteorological phenomena of interest for forecasting (such as heat storms).

xi
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h[er 1

Introduction

End-use electricity demand forecasts play a critical role in resource planning approaches
that actively consider hoth supply- and demand-side options to meet cnstomer energy
service needs. Yel in order to forecast peak demands by end use, utility and state
planners have had to rely on both simulated and borrowed end-use data and on class load
research data. ‘This reliance has introduced additional uncertainty into an already
complicated resource planning process, as questions arise regarding the veracity of these
inputs. The data now available from recent end-use metering projects holds the promise
of reducing thess uncertainties and therebv improving the planning process and its
outcomes.

This report summarizes findings from a unique project to improve the end-use electricity
load shape and peak demand forecasts made by the Pacific Gas and Eleciric Company
(PG&E) and the California Energy Commission (CEC). First, the direct incorporation
of end-use metered data into electricity demand forecasting models is a new approach that
has only been made possitle by recent end-use metering projects. Second, and perhaps
more importantly, the joint-sponsorship of this analysis has led to the development of a
common set of forecasting model inputs. That 1s, the ability to use a common (but not
identical) data set for some of the forecasting inputs frees forecasters to concentrate on
those differences (between their competing forecasts) that stem from real differences of
opinion, rather than differences that can be readily resolved with betier data.

This report is the second stemming from this jointly-sponsored approach for developing
improved residential electricity demand forecasts through consisteni analyses of a
common set of end-use metered data. The first report documented procedural efforts to
prepare the end-use data for analysis and the development of forecasting model inputs for
an older forecasting model used by CEC (Eto and Moezzi 1992). Since that time, CEC
has adopted the same forecasting model used by PG&E (although, important differences
remain between PG&E's and CEC’s mode! specifications).

This report summarizes the development of two alternative approaches for this now
commonly used model and an evaluation of these alternatives {and those summarized in
the first report) along with the inputs currently used by PG&E and CEC. The focus of
the analysis 15 residental space cooling, which represents a large and growing demand
in the PG&E service terntory. In Chapter 2, we review Lhe background for the project
by describing the end-use metered data being analyzed, the forecasting model for which
the new inputs are being developed, and the differences n the use of the models by
PG&E and CEC. In Chapters 3 and 4, we describe aspects of the development of inputs



for one approach to using the forecasting model. In this approach, a forecast of annual
electricity use for space cooling is first allocated to each day of the year (Chapter 3) and
then separalely allocaied to the hours of the day (Chapter 4). In Chapter 3, we describe
the development of inputs for a recently available alternative to this approach in which
the annual forecast is allocated directly to each hour of the year. In Chapter 6, we
describe our evaluation of all of the approaches.

Chapter 7 contains the results of exploratory analyses developed in response to the
interests of PG&E and CEC, These analyses consider issues outside the scope of the
main research agenda, but which might influence future forecasting enhancements. The
issues include: 1) Lhe incremental improvement in accuracy resulting from the explicit
inclusion of a measure of heat storms’ as an explanatory variable for the allocation of
annual electricity use to the days of the year; 2) the energy use patterns of heat pumps,
which employ the same technology as central air conditioners, but also provide heating;
3} the energy use paiterns of room air conditioners, which also employ the same
technology as central air conditioners, but whose applicalion is more Jocalized within a
residence; 4) the inipact of using data from different weather sites to explain space
cooling energy use in cne of PG&E’s more temperate regions; 5) a systematic
examination of the current method used to specify binned load shapes; and &) preliminary
findings from a direct examination of the energy use characteristics of peak days versus
average days.

Chapter 8 draws upon the analyses lo suggest additional areas of work identified in the
course of our research. Appendix A summarizes data handling conventions. Appendices
B and C contain additional graphical summaries of project results from Chaplers 4 and

6, respectively. Appendix D comments on the use of our research in forecasts made with
the HELM model.

! A heat storm s @ multi-day episode of high ambient temperature. Tt has been suggested that the
cumulative effest of several hot days increases the use of slzcinicity for space cooling at 4 given temperature
relative to the elecingily used on an dentically hot day that has not bzen precaded by hot days,

a4



Chapter 2

Background

In the first phase of this project, we analyzed end-use metered data collecled by PG&E
to develop new mputs for the peak demand forecasting model used historically by CEC
(see Eto and Moezzi 1992). Since that time, CEC has adopted the peak demand model
used by PG&LE. The goal of this second phase of the project 15 to use PG&E's space
cooling data to develop inputs for this second model and to compare these inputs to those
previously used by PG&E and CEC for this purpose. Inthis chapter, we review the dala
to be used in the analysis, summarize the basic methods employed by both the now
commonly used PG&E and CEC model and the older CEC model, and contrast the
differences between PG&E’s and CEC’s use of the common madzl.

2.1 The PG&E Appliance Metering Project

PG&E’s Appliance Metering Project (AMP) was the first large-scale end-use metering
project in California {(Brodsky and McNicoll 1987), Since 1883, more than 700 single-
family, owner-occupied residences have been continuously metered. In designing the
project, PG&E was particularly interested in improving its undersianding of the
contribution of space cooling energy use to system loads. As a result, the geographic
distribution of metered househalds is concentrated in the hot central valley of Califormia
where the demand for cooling 15 greatest.

For each household, two appliances were metered in addition to lotal household load.
In the entite sample, a total of sixteen different appliance types were metered. In this
study, we analyze only Lhe data collected on central air conditioning energy use from
about 350 households, althcugh exploratory work reported in Chapter 7 considers limited
aspects of the data collected on heat pumip compressors and room air-conditioning energy
use.”’

PG&E provided LBL with a total of five years of hourly data collected between 1985 and
1989, PG&E replaced all information that might identify individual customers with a
seven digit code (hat identified the households across data sets.

* QOther end uses were also examined in the first phase of the project including refrigerators, clothes
washing, and clothes drying. See Eto and Moezzi 1992, Thase results were used to devalop wew wputs for the
older in-house CEC model; PG&E, in 1g application of HELM., does not consider these end uses explicitly,

~
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PG&E has also developed weights to make the sample more representative of the entire
residential class, and to account for the stratified nature of the AMP sample. Through
discussion with the project sponsors, which considered the fact that there are differences
between PG&E and CEC application of the dala that are not reflected in the develepment
of sample weights, that sample weights were not developed for the 1985 and 1986 data,
and that the focus of the LBL analysis is on load shape, not energy use, it was agreed
that these w=ights would not be used in the present analysis. Therefore, with the
exceplion of the weighted mean unit energy consumption or UEC presented in this
chapter, the results presenied in this report were developed through unweighted analyses
of the dara. Our unweighted analyses are theoretically reflective only of loads for those
single-family owner-occupied residences metered by the project; furthermore, for these
loads, we cannot determine whai biases may exist as a result of the process used to select
participants for the project.

Electricity Load Shape Forecasting Models

Currenl hourly electricity load shape and peak demand models are essentially post-
processors for end-use forecasting models. which separately generate annual forecasts of
energy use. In this modeling framework, equipment purchase and energy use decisions,
stock turnover, and other economic and demographic factors are treated as influences
primarily on annual energy use. The goal of the load shape and peak demand madel is
simply to allocate the estimated annual total load to the hours of the year.

PG&E and CEC currently use a load shape forecasting model called HELM, developed
by ICF, Inc. for the Electric Power Research Institute (JCF Resources Inc. 1992). The
model is very flexible; the user must specify the number of end uses to be forccast as
well as the method for generation of up to an 8,760-hour forecast of energy use. The
model supports two alternative approaches for generating this forecast.

In its standard two-stage application, the user first defines hourly load shapes for a
limited number of day-types and second, assigns day-types to all the days in a calendar
year for each end use and forecast year. The model then distributes annual energy use
(typically, form an end-use forecasting model) to the hours of the year, using previcusly
defined allocation factors. For weather-sensitive end uses, such as cooling, the allocation
procedure may he based on measures of climatic variables, such as a three-day weighied
average of mean daily temperature. In this case, the model also requires a daily weather
file for the year. Daily energy use is allocated to the hours of the day using normalized
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load shapes.? The choice of normalized load shape can be specified as 2 function of
weather variables,

In the latest version of HELM 2.0, the user may bypass the iwo-stage process by
specifying load shapes directly on an hourly basis. Choice of this approach teplaces both
the allocation of annual energy to days of the year and the selection of a normalized daily
load shape.

Previously, CEC used a peak demand model that was developed in-house in the late
197()'s (Jaske and Paige 1975). The CEC model is more structured than HELLM because
it was designed for use in conjunction with dewiled end-use annual energy forecasting
models that were also developed by CEC. For the residential sector, the CEC model
requires annual energy forecasts for ]4 non-space conditioning and five space
conditioning end uses for each geographic region considered. In the past, the CE
model has been used primarily to produce system peak day load forecasts although the
model is, in principle, capable of producing forecasts for non-peak days.

The CEC model, like HELM, allocates a forecast of annual energy use to the hours of
the year in two steps. For space cooling, a forecast of annual space cooling energy use
is first allocated to daily energy use using weather data: CEC uses a three-day weighted
average of degree-days. The degree-days are based on a combined dry- and wet-bulb
temperature varable called a temperature-humidity index or THI.' Unlike HELLM, the
CEC model does not spread daily energy use to the hours of the day using a fixed load
shape. Instead, daily energy use is distributed to the hours of the day as a function of
ume of day and THI (for cooling) or dry-bulb temperature (for heating) in what CEC
refers to as a lime-temperature matrix.

Ll

PG&E and CEC Peak Demand Forecasting Medel Specifications

Although PG&E and CEC now use the same HELM modeling framework, their use of
the model differs in several important ways. PG&E defines seven separate end uses for
the residential secior; three separate space cooling and three non space cooling end uses
corresponding to three geographic zones within the company’s service territory, and a

* The sum of hourly loads in ane day's normalized load shape 15 1. The load in each hour, thersfore,

epresents the proportion of total daily energy use in that hour.

' THI is defined as follow: THI = 15 + 0.4 * {DET + WBT), wharz DBT = dry-bulb tamperature and

WRT = wet-hulb lemperature.



single combined end use [or a fourth gengraphic zone (Pacific Gas and Flectric Company
1991). Figure 2-1 indicates these zones.

To forecast system peak demands for the PG&E planning area, the CEC model produces
separate forecasts for five geographic regions (California Energy Commission (CEC)
1991), as shown in Figure 2-2, Within each region, four space conling (single-family and
multi-family central and reom air conditioning), six space heating, and ten non-space
conditioning end uses are separatelv forecast.

Our approach to recognizing differences in the ways in which PG&E and CEC develop
forecasts for the PG&E service territory is to prepare separate sets of inputs from the
common data set of end-use metered data. Specifically, individual metered data are first
aggregated to the appropriate sub-service territory zone (in the case of PG&E) or repion
(in the case of CEC). The resulting zonal or regional load shapes are then analyzed
using common procedures to develop a consistent (yet separaie) set of inputs for PG&E’S
and CEC’s application of the HELM model.

Descriptive statistics of the data analyzed in this project are summarized in Table 2-1 and
Table 2-2. Each table reporis unweighied and weighted UECs (in kWh/year), load
factors, and coincidence factors by the separate forecasting zones or regions used by
PG&E and CEC in their forecasts.

Table 2-1 and Table 2-2 also show the geographic distribution of cooling appliances by
PG&E zone and by CEC region. Several other forecasting zones and regions are defined
by PG&E and CEC for [orecasting purposes but have hittle or no cooling requirements
and, accordingly, have very low central air conditioner saturations. As a result, few
households were metered.” As a result, we did not conduct analyses for these zones and
regions.

S PG&E's Zona T conlained only | metered central air conditfioners and CEC’s Regions 1 and 5 contained
¥ 2

only 3 and 6 melered ventral air conditioners, respectively.
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Table 2-1. Annual UEC Load Factor {LF}, and Coincidence Factor (CF) for
Central Air Conditioning, PG&E £ones

. : annual
APPLIANCE 1985 1986 1987 1988 1989 average
All Zones
mean UEC 1,254 1,112 1,424 1,607 1,094 1,294
wt.mean UEC n/a n/a 1,283 1,429 996 nfa
n 288 267 337 318 332 308
Zone H
mean UEC 1.802 1,700 2,002 2,234 1,684 1,905
wt.mean UEC n/a nfa 1,663 1,911 1,518 nia
st.dev. UEC hE55 543 718 701 601 678
n 86 382 117 113 111 102
lnad factor 0.063 0.031  0.073 0.074 0.067 n/a
coincidence

{actor 0.92 0.94 0.83 0.91 0.80 n/a
Zone S
mean UEC 1,277 1,188 1,367 1,638 1.018 1,265
wt.mean UEC nia n/a 1,270 1,380 395 n/a
st.dev. UEC 553 485 576 580 479 438
n 116 102 132 118 123 118
load factar 0.048 0.049 0.057 0.084 0.042 n/a
coincidence

factor 0.91 0,92 .89 0.93 0.91 n/a
Zone X
mean UEC 682 4897 709 790 51 629
wt.mean UEC nfa nia 717 753 500 n/a
st.dev. UEC 248 238 737 443 254 -
n 80 a0 86 86 97 B&
load factor 0.0249 0.029 0.038 0.033 0.028 n/a
coincidence

factor 0.90 0.91 0.92 0,92 0.90 n'a
For o description of PG&E zones R,5 and X, please refer lo Figure 2-1. Zone T is the spastal regions
where gir conditioning use is refatively neghigiie.




Table 2-2. Annual UEC, Load Factor (LF), and Ceincidence Factor (CF) for
Central Air Conditioning, CEC Regions

7 . 7 annual
APPLIANCE 1985 1986 1987 1988 1283  average
All Regions
mean 1,254 1,112 1,424 1,607 1,084 1,294
wt.mean n/a n/a 1,283 1,429 996 n/a
n 288 267 337 318 332 308
Region 2
LF .04 .04 .05 05 .04 nfa
CF .01 .01 .01 . .01 n/a
mear 1,149 1,098 1,250 1,400 984
wt.mean n/a nia 1,104 1,227 BEBh nia
std.dev. 443 373 486 449 362 445
n 48 42 56 49 50 49
load factor 0.044 0.043 0.051 0.051 0.038 n/a
coincidence

factor (.88 0.90 0.89 0.90 0.90 nia
Region 3
LF 06 .06 07 .07 .06 n/a
CF .01 .01 .01 .01 .01 n/a
mean 1,608 1,493 1,818 1,982 1.378 1,651
wt.mean n/a n/a 1,531 1,697 1,238 n/a
std.dev, 552 526 676 G486 527 626
n 118 107 147 138 141 130
load factor 0.058 0.057 0.072 0.067 0.058 n/a
coincidence

factor 0.93 0.94 0.84 0.92 0.91 n/a
Region 4
LF .04 .04 .05 .04 .03 n/a
CF .01 01 .01 .01 .01 nia
mearn 346 724 936 1,051 688 849
wit.mean n/a n/a 922 956 6h2 nfa
std.dev. 480 425 779 586 435 563
n 103 98 108 105 120 107
load factor 0.035 0.038 0.049 0.038 (0.033 n/a
coincidence

factor 0.91 0.52 0.93 0.83 .90 n/a
For & descripltion of CEC regionz 2,23 and 4 plegse refer to Foure 2-2.
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Chapter 3

LS

Daily Energy Model

The principal forecasting method offered by HELM is to forecast houtly energy in two
stages. First, HELM allccates estimates of annual enerzy use to each day of the year,
Second, the mode] allocates the resulting daily energy estimates to hours of the day. For
weather-sensitive end uses, such as air conditioning, the allocation of annual to daily
energy is based on daily values of weather variables according to a “weather response
function” (WRF), and on calendric characteristics such as season and day of the week.
This is the method PG&E and CEC have historically used 1o produce their forecast. In
this chapter we describe how we used the PG&E Apphance Metenng Project {AMP)
central air conditioning data to develop specificaiions for the annual-to-daily energy
allocation component of this HELM method.® The bases for these specifications are
season-specific linear regression models which use weather data measured at sites in the
PG&E service territory o model regional or zonal daily averages of AMP ceutral air
conditioner loads.

In this chapter we first discuss aspects of the load and corresponding weather data, as
well as the spatial and temporal aggregation of these daia for the purposes of daily load
modelling.  We then discuss the procedures used to develop daily energy regression
models for use in HELM and describe some of our resulls. The second component of
this forecasting method, that of allocating daily energy to hours of the day, is discussed
in Chapter 4, Mode! evalvation issues are presented in Chapter 6.

Load Data

Many households in the AMP sample have dual-purpose central space conditioning
systems that combine electric central cooling with gas central heating. For some of these
households, the metening equipment used records the demands of both the compressor
used for cooling and the circulation sysiem used for both heating and cooling. Thus, not
all recorded central air condiboner loads can be attributed to the cooling end use: a small

¢ As described in Chapter 2, the AMP sample contains data for three types of appliances associated with the

cooling end use; central air conditioner, room air conditioner, and heal pump compressor. In this chapler we
mode] ceniral air condifioner dala only. Heat pump compressors employ the same tzchnology for cooling as do
central air conditioners, but modeling heat pump compressor data is complicated by the fact that heat pump

cowmpressors are used for heating as well as cooling. Although we did nor develop regression models using heal

pump compressor dala, we discuss some aspects of these daia in Chapter 7. We did develop regression models
for roont aic conditioner loads for nwo zones and one region; these resulls are also presented in Chapter 7.
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fraction of the loads may be for heating circulation. PG&E Load Research estimates that
the average circulation system uses about 1.2 kWh per day during the heating season
(Brodsky and McNicoll 1987). CEC considers heating ventilation loads as part of the
heating, rather than cooling, end use.

To eliminate non-cooling electricity consumption, we developed two rules for treating
observed values. We set the cooling end use load for central air conditioner to zero for
the Winter season (November to March), thus excluding fan loads for heating, as well
as any use of the cenftral air conditioner for cooling which might have occurred during
these five months. For the remaining months, we modeled cooling load as zero for all
days in which the average daily dry-bulb temperature fell below a specified threshold
based on previous PG&E research (62.2, 66.1, and 58.6 degrees for PG&E Zones R,
3, and X respectively, and §2.2, §6.1, and 58.5 degrees for CEC Regions 2, 3, and 4,
respectively).’

As a result, the annual energy use modeled as cooling is less than the central air
conditioner UEC, because the former excludes loads in Winter and loads occurring on
cool days, whereas the latter includes all recorded central air conditioner loads. In the
AMP sample the average percentage of annual UEC occurring in November through
February is 10.2, 12,3, and 7.9 percent for PG&E Zones R, S, and X respectively.*

3.2 Weather Station Assignment and Explanatory Variable Definition

As described in Chapter 2, we used two separale sets of geographic aggregation for our
analyses, one by PG&E Zone (zones R, S, and X), and one by CEC Region (regions 2,
3, and 4), with each metered residence assigned to one zone and to one region. Each
PG&E zone is associated with a weather station maintained by PG&E, and each CEC
reglon 1s asscciated with a Mational Oceanic and Atmosphernic Administration (NOAA)
weather station, according to assignments give by PG&E and CEC, respectively. PG&E
weather stations at Fresno, Sacramento, and San Ramon are used for zones R, S, and X,
respectively, and NOAA weather stations at Fresno, Sacramento, and San Jose/Sunnyvale

¥ Qur examination of data for individual residences 1ndicates that some conling loads may oceur on these
days, However, we did not medel them, as they conlnbuled negligible loads to the region- or zone-wide
average load shape. These loads might be accounted for by compuling seasonal average load (wnstead of Q) or as
a miscellaneous or heating end use.

¥ We noticed that a relatively high percentage of lhe higher wimer loads assigned to the central air
conditioner end use occured in late December.

o
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are used for CEC regions 2, 3, and 4, respectively. See Table 3-1. The correspondernce
between the two sets of geographic aggregations is discussed in Appendix A.

Half-hourly measurements of dry-bulb temperature and relative humidity are recorded
for each PG&E weather station. Hourly measurements of dry-bulb temperature, wet-bulb
temperature, wind speed, cloud cover, and a number of other meteorological
characteristics are recorded at each NOAA station. From these primary data sets we
developed a set of secondary weather variables to be used as potential explanatory
variables in daily energy madels. For the PG&E stations, we based these weather
variables on hourly averages of measured half-hourly dry-bulb temperature and of
relative humudity. For the NOAA stations, we based these weather variables on measured
hourly dry-bulb and wet-bulb temperature.

Table 3-2 lists the set of daily weather variables we derived from the hourly NOAA and
PG&E weather data, and provides definitions for each variable. The variables include
average dry-bulb temperature, maximum and minimuin hourly dry-bulb temperature,
(MXDRY and MNDRY) degree-cays of the temperature-humidity index base 68oF (THI-
DD; see also Appendix A), and a series of daily sums of cooling degree hours using
temperature bases from 73°F to 959F in five degree increments. For our regression
models, we considered as possible covariales not only the value of each variable on the
day modeled, but the value of the variables one and two days previcus. Recent weather
variability may also influence cooling demand. We did not examine this phenomena 1n
detail, but attempted to capture some of this effect in the variable TVARMX, defined as
the variance of the maximum dry-bulb lemperature over the three days up to and
including the day modeled,” and the components of another measurement of temperature
variables developed by Ignelzi and Way (1988), and subsequently used by Krisiov
(1991); we call these variables SCEl (MNDRY ® MXDRY1) and SCE2 (MNDRY1 *
MXDRY?2).%

? Ignelzi and Way (1988) instead use a femperature variance variable proportional to TYARMAX *
MXDRY.

" In the CEC-sponsored Califonia Weather Index Development project, Knstov (1991) addressed the use
of various meleorological variables for use in modeling weather-sensitive loads, Knistov (199)) describes
imveshigalions of several weather indices developed Lo support energy load modeling appheable w Califorwa,
angd shows results of tests of these indices fer modeling SMUD and PG&E systein data, as well as 1989 AMP
average cenlrdl air conditioner load data, for hoth daily and hourly load modeling. The pnmary metenrological
data used were NOAA measuremenlts of dry-bulb temperature, dew point, wind spead, and cloud cover;
secondary measures included THI, cooling degree days, and varables based on principal components analyses
of the pimary vanables.



3.4

Calendric Aggregation

We disaggregated data into four seasons: Winter (November through March), Spring
(Apnl and May}, Summer (June through August), and Fall (September and October),
based on an examination of the monthly distributions of daily average temperature.!' We
will use fhese same seasonal definitions for the dervation of load shape libraries
(discussed in Chapter 4). We investigated, but did not use, day-of-week or day types
(Weekday vs. Weekend/Holiday) to model daily energy, since we detected only very
small or nonexistent effects. However, while none of our final models for daily load use
day type as an explanatory variable, we did develop distinct load shape libraries for
Weekday and for Weekend (see Chapter 4), which is consistent with the current PG&E
practice of developing daily weather response functions irrespective of day type.':

Linear Regression Models

In the past, PG&F modeled cooling loads as a function of linear and quadratic terms of
a three-day weighted average dry bulb temperature (WAVGDRY) where for day i:

WAVGDRY(] = 0.6 * AVGDRY[{] + 0.3 * AVGDRY[i-1] + 0.1 * AVGDRY[i-2],
where AVGDRY = average dry-bulb temperature,
so that the regression model is:

SUMLOAD[I] = « + p* WAVGDRY[{] + y* WAVGDRY[/]* + error,

where =, p and y are coefficients estimated using ordinary least squared regression on
total daily energy use, SUMLOAD.

To revise these regression models, we used an automatic variable selection procedure
known as stepwise regression to help select a “good” (in lerms of variance explained by
the model; that is, r-squared) linear model for SUMLOAD, using as potenial

T We also estimated models far the CEC remions for an Extended Summer season defined as the four month
period hme through September. This Extended Summer season corresponds to a definition used in some past
waork, 2.g., PG&E's 1983 WRFs.

< In previous farecasts, PG&FE has used two day types (Weekday and Weekend) and ome szason, defined as
the twelve mouths of the yaar, with the lnad shapes libraries and weather response functions derived on the
basis on load data for swnmer (June through September) months only.
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explanatory variables the covariates listed in Table 3-2. To initialize the stepwise
procedure, one specifies a response variable (here SUMLOQAD), a set of variables to be
used as potential explanatory variables in the regression model (here the daily weather
vaniables described in Table 3-2), and an “F-to-enter” and “F-to-remove” which specify
the degree of explanatory capability an individual covariate must meet to be entered or
omitted from the regression equation at any step. Variables are added one at a time to
the current model, After each addition, the F-value of all variables in the model 15
evaluated; any variable with an F-statistic less than the specified “F-to-remove” value is
omitted. The stepwise procedure ends when all variables in the model have F-statistics
greater than F-to-remove value, and all variables outside the model have F-statistics
lower than the F-to-enter value. We used an F-value of 0.15 for both F-to-enter and F-
to-remove.” In developing the final HELM input files, we reduced the dimensionality
of most of the models resulting from the stepwise regression procedure, as discussed
below,

While the stepwise procedure results in sets of covariates which have relatively high
explanatory capability, results must be interpreted with caution: (1) the procedure 1s not
optimal, in that it does not necessarily result in the subset of a given size which has the
highest possible r-squared (that is, for a fixed model dimensionality, the procedure does
not necessarily optimize the set of explanatory variables in terms of maximizing
explanatory capability); and (2) many alternative sets of variables may have nearly the
same r-squared as the final subset resulting from the stepwise procedure. Stull, the
procedure is useful in companing sets of variables to be used in predictive models.

Because these regression equations were to be used in HELLM, we considered the
following practical issues in our model specifications: (1) HEILLM PC 2.0 limits the
aumber of weather variables which can be specified in models for weather-sensitive end
uses to six,' and (2) although it is possible to specify different sets of weather variables
for each season in the model for each season, it is awkward to do so. For these reasons,
we constrained the number of vanables in the regression model specified in the HELM
input files to six and used the same variables for cach season. To select these variables,
we examined the variables in the season-specific models, and the marginal r-squared
contribution of each variable according to the stepwise procedure. We first chose those
variables ranked highest in terms of marginal r-squared {for the Summer regression
models and then augmented these basic madels according to the variables selected for the
Fall and Spring Seasons.

* The SAS default valne for F-to-enler and F-to-remove is 0.13.
M Quadrate and higher powers of cach of shese six variables may be used, in addition to the linzar term,
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3.5

Tables 3-3 and 3-4 shows the variables included in the resulting HELM regression
maodels for CEC regions 2, 3, and 4 and for PG&E zones R,S, and X, respectively.
These represent the WREs used in HELM, which were derived from a stepwise linear
regression procedure using the full set of variable listed in the left column. Each cclumn
gives the regression coefficients for all variables included in the WRF, The regression
coefficients are provided for comparative purposes cnly; please refer to the HELM input
files for higher precision in regression coefficient values.

The tables also show r-squared for these models, and, for companscn, the r-squared
from models achieved by the subset stepwise procedure. With the caveat that it is
insufficient to judge models only by comparing r-squared, we list for comparison Lhe r-
squared values for the PG&E WRF-format regressions {load as a function of
WAVGDRY and WAVDRYSQ, as discussed above), and for the regressions of
THISUM, THISUMI, and THISUM2 on SUMILOAD as formerly used by previous CEC
forecasts. The PG&E WRF-formal regressions have nearly as high r-squared as do the
stepwise regression madels; this is particularly impressive considering that the stepwise
regression models were developed by explicitly maximizing r-squared.

In general, fits are best for CEC region 2 and for PG&E zone S, both of which represent
the Sacramento area. For example, for CEC region 2 Summer, a model with just two
explanatory variables, THISUM and CDDSUMS90, explains 92 percent of the varance
of load about the mean. The fits for CEC region 4 and PG&E zone X are considerably
peorer than the fits for the other regious and zones. The poorer fits for CEC Region 4
and PG&LE Zone X are not surprising, since these two areas are relatively mild, and may
be more climatically diverse than the other areas as well. In Chapler 7 we re-estimate
daily load regression models for CEC region 4, using an alternalive set of weather data
to construct explanatory vanables,

Assessing Model Fit

While r-squared can provide a useful summary measure of a model’s explanatory
capability, it has several limitations, and does not describe all aspects of mlerest in
assessing miodel fit, Among the chief limitations of r-squared are: (1) it dves not
necessarily represent the predictive capability of the model for the aspects of most
interest; for example, the model may give biased estimates for peak load days, but r-
squared aloue will not indicate this; and (2) r-squared describes model fil using the same
data used to develop the model as to assess it; oul-of-sample assessment of the model
may provide a better indication of how well the model can work for forecasting purposes.
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For these reasons, it is valuable to develop intuitions regarding these findings by
reviewing graphical summaries. Figure 3-1 is a time-series plot of model residuals
(observed minus fitted values of daily average central cooling energy) for CEC regions
2, 3, and 4 over a periad of five years. For each region, the residuals are the result of
three separate regressions, one for each of Spring, Summer, and Fall seasons. The gaps
in the plot are for the winter season (November through March) for which daily cooling
loads are assumed to be zero.

The plots for CEC regions 3 and 4 show some striking patterns, In particular, the
regression models for region 2 tend to overpredict loads in 1983 and 1986, and
underpredict loads in 1988, with consistent overprediction for a substantial period in
summer 198Y. The models for region 4 lend to overpredict in 1986 and 1989, and
underpredicl in 1988 and in mid-summer 1985. We do not know how to explain the
fairly major response shifls shown for region 3, or the extent lo which the patlerns in
AMP sample load indicate palterns in regional load, but the effect may be important 1n
assessing the value of forecasts.'

¥ Such annual shifts bave implications for the time peripd over which models are developad. Ope possible
tregiment of this effecl, for modeling porposes, is to express all loads as daviations from the anpual meaps, as
sugpested by Krsiov (Kristov 1991).
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Table 3-1. Weather Stations Assigned to PG&E Zones and CEC Regians for
Cooling End-Use Models Based on 1985-1585 AMP Data

’ : . Annual Average
PG&E Zana o - PG&E Weather Station CDH-75* {1985-1389}
S e e Sacramento ..., ... 24437
R .. Fresno ........... 13138
X o e SanRamon .. ...... 5842
CEC Region ' NOAA Weather Station
2 e e Sacramento ., ... ... 14134
3 . Fresmo ... . ... 25445
A e e Sunnyvale 1985 .... 2401
San Jose 1986-1985 5385

BE
# dnnual CDH-75 = E max {dry-bulbremperacire [R] - 73, 0

h=1



Tahbie 3-2. Variables Used in Daily Regressions

. Marizble Name ] Definition

SUMLOAE [oad in WAh/day, computing from regicnal average foed sheape

AVGDRY avarage dry-bulb temperature IDBETY

AVGDAY1 AVGDRY, previgus day

AVGDRYZ2 AVGDRY, two days previous

MXDRY rmaximurm heurly DBET

MXDAY1 MXORY, pravials day

MXDRY2 MXORY, {wo days previous

MMNDRY ‘minimum heurly DBT

MHDRY ORY, previous day

THISUM sum sver 24 hours of max(TH-68,01°

THISUM1 THISUM, previous day

THISUMEZ THISUM, two days previous

MXTHI maximurm hourly velue ot THI

MXTHIt MXTHI, previous day

MXTHI2 MXTHI, two days previaus

HUMMXDRY rafative humidity at hour of MXDRY

CDD7575 - sum avar 24 hours of méax(D8T-75,0)

CDD755M1 COD755M, previcus day

CDD755M2 CDD755M, two days previous

COD8OSM sum over 24 hours of max{DBT-B0,0}

CDDaosMT CDDBOSM, previous day

CODBOSM2 CDDBOSM, two days previous

cDDassM sum over 24 hours of max{DBT-8%,0)

CDDBTSM1 CDD&5SM, previous day

CDDBSSM2 CDD85SM, twao days previous

CDD3osSM sum ovar 24 hours of max(DBT-30,0)

CDD3S0SM1 CDDSQSM, prévious day

CODI0SM2 CDDS0SM, twa days previous

CDD955M sum gver 24 hours of max{DBT-85,0)

CDD9E5M1 CDDS55M, previous day

CDD9EsM2 CDDI5SSM, two days previous

TVARMX varlaice of MXDRY over three pust days, ihclusiva

TVARAVG variznca of AVGDRY aver three past doys, inclusive

TCHANGE MXDRY - MNDRY1

AVGORYSQ AVGEDRY?

SCET MXDRY1 * MNDRY

SCE2 MXDRY2 * MMDRY |

Qualitative Varinbles

REGION CECReglan 2, 3, or 4

ZDNE PGAE Zone RS, ar X

DAYTYPE day type 'ndieator, sither {1] Weakand or Holiday, or [2] non-
holiday
Weéi{dﬁv Holidays are as dzlingd an the PG&E Rete Summary
sheel}

SEASON Winter [Nov-Marl, Spring (April and May), Summer [June-Aug!
Fall {Sep and O}
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Table 3-3. Summary of Regression Results for CEC Regions 2,3,and 4’

. Reglon 2 Saasare Ragrassiny Costficsnis - Rugiory 3 Seasonat Regression Cosffiniants - . . Aegion 4 Ssacoral legrassion Coolficients,
Varinlde ' . . ’ T : . B

" Spring. Summas. Fatt Spring Summar - b ali Spring .. s Summer - _ Fall

INTERCERT 2,62 3,64 246 55,91 44,99 ETRE 218 ©a.08 ) 1,80
AVGDRY .

ANVGORY 1
AVGIRAYZ
MALRY
MODAY1
MIAYZ
RNDRY
PMNDAT 1
THIS UM 0.048
THIGUMT
THISUME
MK THI 3,948 -0.664 \0.512
MEXTHIT
MATHIZ
HUMMDAY
CODSUMTE
CODSLM?E, S
CODSUM?E .2
CONEUMED
EOOSLMED,T 0.012 c.06E 2527
cosUmed.2 . '
CNOSUMES 0.078 0 0an 0.074
CUUSUMBE.1 :

CLOHUMEBE. 2 £.029 G2 a.521
CHDSUMEBD .
COOSUMBO A 5.1a0 n.avs 0.09g
CODBUMBC.Y
CRDSUMBE a.178 n.07e 0 248
CODELIMIE,
CODSLIMBE. 2
TVARM
TVARAWG
TOWANGE -G.08H G, 198 -0.108 0,092 -0.18% oo
AVGURY SO
SCEN

SCED

R i eovariates! 2.91 G346 0,33 0,92 n.ge z.7E 0.87 0.74 052

R¥ il 1# covarigtes] 0.9B116) 0,0E!7] 0.86{7] 0831151 D.80W} o a7 087411 G.50112) G.8Z{12)
AP RE WHF n.B1 ,82 0.88 G.H0 0.87 z.gt 283 .74 .62

AL THISUMID, 12 0.74 o.81 77 0,57 p.Ag o053 c.85 .72 G.B?

¢ Con ot men tovidud tH 2sepmiate oo, Toom sule o HOUM nipt dife dm g pression 3 cepaeaion coulBoem vahoe,

MR 2.0Bi 0.:2% 2.137 Z.093 D169 0381 t,104:

[e]




Table 3-4. Summary of Regression Results for PG&E Zones' §,R, and X

. Zone S Seasonal Regression Costficients” - £Zons R Suasenal Regression Cosfficients Zone X Seasonai Regression Coefficients . i
Variable -Name Spring Suenrmar Fall Spring Summer - © Fall : Spring .’ . Summar P Fall. ' )
INTERCEPT 138.0 1.4 (ns) 54.0 (ns) ZB3.0 386.0 294.0 129.0 173.0 104.0 2
AVGDRY -4.4 -0.5 Ins) -1.7 {ns) -8.20 -11.5 -8.58 43 5.9 © -34 B
AVGDRY1 :l
AVGDRY 2 : ' E
MXDRY
MXDRY1
MXDRYZ
MNDRY .
MNDRY 0.09 -0.01 ins} 0.05
THISUM
THISURMT
THISUMZ
MXTHI
MXTHII
MXTHI2
HUMMXDRY
CDDSUM7E
CDD5UMTE 1
CDDSUMTS. 2
CDDSUMBO
CDDSUMBO. 1
CDDs5UMBO. 2 0,02 0:02 0.01 .
CDDsSUMBS 0.03 {ns) 0.041 0.10 0.03 {ns) -0,03 0.05
CcDDsUNESE.1 :
CODSUME5.2
CDODSUMB0 -0.02 {ns} -0.08 0.03
CDDSUMS0.1 0.04 0.07 0.09
CDDSUMS0.2 0.04 0.06 0.01 {ns}
CDDSUMSS
CDDSUMS5
CDDSUMS5.2
TVARMX
TVARAVG
TCHANGE
AVGDRYSQ 0.03 0.01 |ns) 0.01 0.06 0.08 0.06 0.04 0.05 0.03
‘SCE1 ‘
SCE2 0.0006 0.0008 0.0004
K2 (¢ aavnriston) 0.93 0.B4] 0.94 0.94 0.84 0.97 ‘. ) 0981 .- 0,90 ! 0.73 )
RE-1ull (7 govaniates) 0.96(7! 0.B7(13) 0.97(6) 0.95{14) 0.95(B} 0.97{10} 0.95(15) 0.92{10} 0.73(4}
RY-PGAE WhF 0.91 0.B2 0.86 0.83 0.84 0.94 0.89 .89 ' 0.65
A= THisumIo, 1,21 0.79 0.BO 0.78 0.78 o.e2 0.82 0.77 0.82 0.62

Y I hess coulticiants nro pievided lot camparntiva puipases. Plussa raloc ta HEL M nput files lo) tugher groomion i reqisssion eoollicient valuos.

I
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Figure 3-1. Time series plot of residuals from Daily WRFs for
CEC Regions 2, 3, and 4, 1985-1989 (winter omitted).




Chapter 4

Binned Hourly Energy i.oad Shapes

In this chapter we describe how we developed specifications for HELM’s allocation of
daily central cooling energy estimates to the hours of the day.'® HELM performs the
allocation by assigning each day to a fixed 24-hour load shape accerding to season, day
of week, and weather measurements for that day. Below, we discuss how we derived
libraries of fixed load shapes from the AMP sample data using bin definitions previously
specified by PG&E. We continue discussion of our work on binned load shape libraries
in Chapter 7, where we assess the variability of the load shapes within a bin and also
describe our inilial investigation of possible alternative bin definitions.

4.1 Approach

The principle behind defining load shape bins is to use characteristics external to load
data, such as weather and day of the week, to separate days into groups such that load
shapes are similar within a group, relative to load shapes in other groups. Grouping, of
course, will depend on the measure or measures of similarity used, which in turn should
depend on which aspects of the load shape are of most importance in forecasting. All
binning described in this chapter is based on load shape descriptions in which hourly load
1S given as a proportion of total daily load; we refer to these as load profiles or
normalized load shapes. Load shapes for a bin are computed using HELM’s algorithm,
described below, which is based on the use of load duration curves.

PG&E previously developed load shape bin definitions for zones R, S, and X using only
1989 AMP data and PG&E weather data. Bin definitions were based on three-day
weighted daily average dry bulb temperature described in Chapter 3. The bins were
developed using HELM PC 1.0, and were based on data for an extended summer season,
June through September. The bins were developed using a manual iterative procedure,
in which bin temperature ranges were successively modified towards minimizing the sum

of the hourly standard errors within a bin. Table 4-1 shows the adopted bin definitions.

'* The daily energy estimates are computed according to daily Weather Response Functions, which are
described in Chapter 3.



LBL extended these definitions to a changed summer season definition (June through
August) and to the Spring (April and May) and Fall (September and October) scasons in
order tc develop load shape for HELM input files. We used AVGDRY rather than
WAVGDRY to make bin assignments. (See Table 3-2 for formal definitions of these
guantities.) We also extended these definitions to the CEC Regions, We applied PG&E
zone R bin definitions to CEC region 3, PG&E zone § bin definitions to region 2, and
PG&E zone X definitions to CEC region 4. For cases in which the extended definition
resulted in a bin with too few days being assigned, the bin was combined with the bin
directly below it. This occurred in four cases for PG&E zones and in two cases for CEC
regions.

Data for all days assigned to a bin are used to compute a representative load shape for
the bin, HELM's algorithm for computing this representative load shape is based on the
use of a load duration curve. The procedure is described in detail in the HELM Manual
(ICF Resources Inc. 1992). In brief, the algorithm 1s as follows: (1) determine the set
of days falling into a bin, (2) normalize the loads in each day in the set by dividing each
observed hourly load by the total daily load (optional), (3) compute an average load
shape based by averaging the loads for each hour across the days in the set, {4) compute
the load duration curve for each day by reordering the loads in each day from highest to
lowest load, (5) compute the average load duration curve by averaging the hourly values
of the daily load duration curves for all days in the set, and finally, (6) denve the load
shape representation by reordering the loads in the load duration curve according to the
relative magnitudes in the average load shape (e.g., the hour of the peak in the average
load curve 1s assigned the magmtudes ol the average peak hour in the load duration
curve)

4.2 Results

The resulting load shape libranies are represented graphically in Appendix B, Figures B-1
through B-3 present the load shapes for PG&E zone R for Spring, Summer, and Fall
respectively. Figures B-4 through B-6 present PG&E zone S; Figures B-7 through B-9
present PG&E zone X; Figures B-10 through B-12 present CEC region 2, Figures B-13
through B-15 present CEC region 3; and Figures B-16 through B-18 present CEC region
4, Note that some load profiles in cooler bins (e, g., the load profile for the 66.2-75° bin
for Spring in PG&E zone R) show small “bumps” in early morning hours. These bumps
may correspond to ventilation loads for heating.!” The Region 4 load shapes for Fall and
Spring (B-16 and B-18) are somewhat irregular, suggesting perhaps bins could be further

" Tt is our understanding that previcusly PGXE smoothed these bumps away using a smoothing featrs
provided 1n HELM.



collapsed, especially since the Summer load shapes for the region (B-17) vary little by
temperature bin. However, the load shapes for the mildest of the PG&E zones, X, are
relatively smooth, and do vary considerable by temperature bin.

Table 4-1. Coocling Load Bins hy PG&E Zone for Spring, Summer and Fall

Seasons”®
Rarige of Daily Average |emperature (af)
PG&E Zaone Waekday Weekend
T 0.0-668.2 ... ... ... .. (0.0-66.2
66.2-75.0 66.2-75.0
75.0-80.0 75.0-80.0
80.0-85.0 80.0-85.0°
85.0-87.5' 85.0-87.5
87.5-100.0 87.5-100.0
S 0.0-621 ... ... ... . 0.0-621
62.1-70.0 62.1-70,0
70.0-75.0 70.0-75.0
7%.0-80.0 75.0-80.0
80.0-85.07
85.0-100.0
X 0.0-586 ......... .. 0.0-58.6
58.6-67.5 58.6-70.0
67.5-72.5
72.5-77.b
77.5-100.0
* these bins were used ta develop nad shape representation libraries for HELM daily madels
! except for Spring: range axtanded to 85-100
P gxcept (or Spring: Tange axtended tw BG-100; and Fall: range exlended o 8G-87.3
Je)(-:ep! for Spring: rangs extanded ic BO-100




Table 4-2. Cooiing Load Bins by CEC Region for Spring, Summer and Fall
Seasans’

: - Range of Daily Average Temperature (2F}
CEC Region . Wedkday ' Weekend

2 0.066.2 ........... 0.0-66.2
66.2-75.0 66.2-75.0
75.0-80.0 75.0-80.0
80.0-85.0 80.0-85.0
85.0-87.5%' 85.0-87.b
87.5-100.0 87.5-100.0

3 . 0.0-62.1 ....... 0.0-62.1
62.1-70.0 62.1-70.0
70.0-75.0 70.0-75.0
75.0-80.0 75.0-80.0
80.0-85.0¢
85.0-100.0

4 L. 0.0-586 ....... J.0-58.8
58.6-67.5 58.6-70.0
67.5-72.5
72.5.77.5
77.5-100.0

Fi

(3]
N

* these bins were used 10 develop load shape linraries for HELM daily mogels
" except for Spring: range extenasd to 80-100
except for Spring: range extended 1o BQ-100




Chapter 5
e

Hourly Energy Models

In this chapter, we examine models now available in HELM that directly allocate annual
cooling energy to hours of the year. This procedure is an alternative to the [wo-stage
allocation procedure, which has been used by PG&E and CEC, and for which we
developed models in Chapters 3 and 4. The models we examine are based on linear
regressions developed using hourly weather data to model hourly average metered AMP
central air conditfioner loads. Our approach is to first consider a variety of madel
specifications using CEC region 3 Summer data.”™ Based on these investigations, we
then proceed to develop models for Summer season cooling end use for CEC regions 2
and 4." Formal model assessment issues are left to Chapter 6. Additional exploratory
issues considered in the development of the models are also discussed in this Chapter.

5.1 HELM Hourly Weather Response Functions

The most recent version of HELM PC (Version 2.0) offers the capability to develop and
use hourly Weather Response Functions as well as daily Weather Response Functions
(WRFs). Hourly models allow for a more explicit connection hetween diurnal weather
patterns and cooling load than do daily models, since daily models also require a separate
procedure to allocate daily energy use to the hours of Ihe day.®

The format HELM uses for the hourly WRFs parallels that used for the daily WRFs.
HELM allows the user to model hourly load as a linear function of weather variables,
where models may be specified separately according fo user-defined seasons and
daytypes.” HELM interprets the hourly loads resulting from the WRF as a relative

* We selected CEC Region 3 for our exploratory analyses because it is the region (among the CEC
Regions) wath the highest average central air conditioner UEC.

¥ Hourly models wers not developed initially for PG&E Zones R.S, and X pending the outcome of ihe
overall evaluation of this approach in Chapler 6.

¥ A time-series based approach to hourly load modeling is theoreticully appealing: however, HELM does
not directly provide for such an approach; we did not investigate the development of such modsls.

"' The model for a given combinaticn of szason and daytvpe may he piecewise linzar, consisting of several
segments, with each segment defined according to the values of wenther variables, with different parameter
coafficients specifizd for each segment,



percentage of total energy within a forecast period, which is typically a calendar vear.
These relative percentages are subsequently scaled to reflect an exogenously specified
(from an annual energy forecasting modcl) total energy use for the period specitied in
the HELM Forecast file. For flexibility, we developed our models outside of the HELM
framework using SAS, and subsequently reformatted the resulting model specifications
as HEL.M 1nput files.

5.2 Weather and Load Data

Table 5-1 lists the covariates considered for our hourly maodels, We based this list, in
part, on the weather variables censidered in the hourly models examined by Krislov
{1991).2* Note that the variables wind speed (WNDSPD) and cloud cover (CLDCVR),
which werz not considered in the construction of our daily Weather Response Functions,
are available only for NOAA stations and not for PG&E weather stations. We include
Temperature-Humidity Index (THI) in several forms: THI (for THI base (), THI-base-68
(THIB, defined as the greater of THI minus 68, or 0), as well as the six-hour lagged
sums of THIB™ (THIBSUMS6) and the squared value of THIB (THIBSQ). Some other
possible transformations of the basic weather vanables (e.g., different bases for THI) are
discussed below.,

As discussed 1n Chapter 3, some of the AMP central air conditioner load data includes
small ventilation loads incurred during heating operation. Although the models exarmined
in this chapler are based on Summer data only, this load data may also include such

= Note that the modsls we discuss are developed on the basis of five years of data (1983-1989), whereas
Kristov (1991) examnines 4 similar set of models using one year of daia (1989).

= In linear regression models for hourly average AMP loads, Kristov found that using all four primary
weather variables (dry-bulb temperature, dew point, cloud cover, and wind speed) had considerably more
explanatory power than THI alone, and that adding lagzed THI miormation greatly improved the explanatory
power of bath the four-variable and the THI-alone regression models. Kristov considered two types of daily
regressions, one modeling iotal daily lpad (SUMLOAD) and one modeling maxinum hourly lead
(LOADMAX). ln general, fits were better for LOADMAX than for LOADSUM, which has implications for
modeling peak loads, in particular. ¥nstov found thal models using the 24-hour sum of TI1-base-68 (THISUM)
for the present day and for the two previows days (as motivated by the CEC's cument practice for (hair Peak
Demand Forecast model), and simularly, models using the 24-hour sum of couling degree day base 73
{(CDDSUM) for the current day and the two previcus days, provided the highest explanatary capability for the
linear regression models, among the five medels cousidered.

“ Kiistov alsa used 4 log period of six. Baszd on our examination of the partial autocorrelation eslimates of
residuals from Model 1, six hours appeared to be an appropriate lag period (although the “best” lag period
could vary depending on hour of the day),

[
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ventilation loads, particularly in the early morning or late evening hours. Load shape
representations (Figure B-11, B-14 and B-17) indicate such occurrences are minor for
Summer but they may be more important for modeling milder seasons and regions, for
example some load shapes for Spring region 2 (Figure B-10) shows an 8 a.m. “bump”.

L
d

Exploratory Regression Results for CEC Region 3

Using previous research and forecasting practices as a guide, we examined four linear
regression models, in each case using only data for Summer (June through August) in
C'EC region 3. The data for each hour were modeled separately. Tables 5-2 through 5-4
summarize results for the first three models, representing 72 separate regressions (24
hours for each of three sets of explanatory variables). The tables show model r-squared
and note vanables for which the regression coetficient was statistically significant at or
below the 0.05 level.

Model 1. Load = f {WETBLEB, DRYBLB, CLDCVR, WNDSPD, error)

This model uses the four basic NOAA weather measurements routinely available on
hourly weather data tapes. Table 5-2 summanzes Model 1 results. For all hours, 1-
squared is considerably lower than those for the other models considered below, Model
fit, in lerms of r-squared, is best for the late afternoon and evening hours. For example,
r-squared in each of the hourly models for 5 p.m. through 10 p.m. 15 above 0.75.
Examination of residuals reveals that part of the reason for the relatively poor fits is that
in each model, load is considered linear in temperature throughout the range of observed
temperatures, whereas in reality cooling load is near zero for most hours below a
sufficiently cool threshold. That is, load increases in temperature only in the weather
range in which cooling loads occur.

Except for the intercept, coclficients are positive (if they are significantly different than
zero). The regression coefficient for cloud cover (CLDCVR) is sigmificantly different
than zero in all hours after 10 a.m. but is significantly different than zero i no hours
before 10 a.m. The regression coefficient for wind speed (WNDSPD} is sigmficantly
different than zero at the 0.05 level for only a few hours: 5 am., 8 a.m., 9 p.m., 10
p-m., and 11 p.m., with a positive coefficient for each of these hours. The addition of
two variables WNDSPD and CLDCVR together explain less than | percent additional
variance in load over a model with WETBLB and DRYBLB alone (that 15, WINDSPD

* It may be more apprapriaiz 1o use a regression procedure wlhich accounts for the autocorrelation of the
residuals, as did Kristov (1991). However, approprate software was not available at the time of analysis.
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and CLDCVR iogether have a marginal r-squared of less than 0.01 relative to the
WETBLB and DRYBLB model.}

Model 2. Load = f (THIB, THIBSUMS, error)

This model is motivated by the use of the weather index THI used by CEC’'s Peak
Demand Forecasting Mode] (which uses THI both in allocation of annual energy to the
daily energy and in allocation of daily energy to hourly energy). Table 5-3 summarizes
Model 2 results.

THI, as a fixed function of wet-bulb and dry-bulb temperature, allows less flexibility in
modeling than using wet-bulb and dry-bulb temperature independently. We found, as did
Krstov (1991), that using THI alone as an explanatory variable resulted in considerably
lower r-squared than those of Model 1. But by using THIB (THI -base-68, the maximum
of THI minus 68, or zero), we obtained higher values of r-squared than for Model 1
(results for the model using THIB only are not shown). In this case, the use of a
“degree-day” concept successfully addressed the prablem noted in discussing Model 1
of limiting model fil to temperature ranges with observed cooling loads.

Model 2 includes THIB, and in addition, THIBSUMG6, which is the sum of THIB over
the six hours preceding the hour modeled. The two THI-based vanables of Model 2
together achieve higher values for r-squared than do the Model | vanables: considerably
higher for low-load morning hours and moderately higher for aflernoon and evening
hours {e.g., r-squared of 0.84 for 6 p.m. as opposed to the Model 1 r-squared of 0.81).

Model 3, Leoad = f (THIB, THIBSUMS, THIBSQ, DAYTYFE, error)

Madel 3 incorporates two new variables to those of Model 2: a DAYTYPE variable
{(Weekday, or Weekend/Holiday), and the square of THI-base-68, THIB68S(Q. Table 5-4
summarizes Model 3 results. These additions lead o considerably higher values of r-
squared, particularly in the afternoon and evening hours, which is when the highest loads
occur. For example, the r-squared values for 6 p.m., 7 p.m. and 8 p.m. are 0.87, (.88,
and 0.88, respectively, for Model 3, versus 0.84, 0.84, and 0.82, respectively, for
Model 2.

The coefficient for DAYTYPE 15 significantly different from zero (again at significance

level at or below 0.05) only for 12 midnight and the hours between | p.m. and 5 p.m.
inclusive, with a negative coefficient for Weekdays (lower loads) than on Weekends for
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these hours.®® % The lagged six-hour sum of THI-base 63, THIE68SUMS6, is
significantly different than zero (p < = (.0001) for all hour models.

Model 4. Toad = f (WETBLB, DRYBLB7), CLDCVR, WNDSFD, THIBSG,
THIBSUMS, error),

We also examined a fourth model but do not summarize results in a table. This model
represents Model 1 with modifications to address some of the deficiencies noted above:
DRYBLE70 (the maximum of DRYBLE minus 79, or zero) replaces DRYBLB, and
second-erder (THIBSQ) and lagged (THIBSUMG6) weather information are added.
Nevertheless, the r-squared for this model is only slightly better (by 0.01 or less) than
those for Model 3.

Based on these results, Model 3 seems to represent the best model among those
considered above, considening fit, parsimony, and the limitations of the weather data
base. With respect to Model 4, which had a very slightly higher r-squared, two of the
weather variables (CLDCVR and WNDSPD) are not available from the PG&E weather
stations, which would be needed to model hourly loads for the PG&E zones. In addition,
it is also likely that the choice of base temperature for DRYBULB70 would also change
tor other CEC regions and PG&E zones.

Ln
e

Regression Results for the Remaining CEC Regions

We then estimated regression coefficients for CEC regions 2 and 4 using the structure
of Model 3. Tables 5-5 and 5-6 summarize Model 3 fit for these CEC Regicns (as noted
above, Model 3 results for CEC region 3 are summarized in Table 5-4). Figure 5-1
presents the coefficients from the models developed for all three CEC regions
graphically. This figure shows all coefficients for each hour, whether or not the
coefficient was found to be statistically sigmificant, The coefficients for each covariate
show characteristic diurnal patterns across the regions, but in general interpretation of
the coefficients is comphicated by the fact that THIBSQ fcovariate of the thard column)
is a function of THIR68 (covariate of the second column).

% Since DAYTYPE is a binary-valued vanable, if has the same effect as allowing two different intercepts
tor tha model {one for Weekday, and ane for Weaekend/Holiday).

-7 We alse introduced, but ultimately did oot include, day of the week a¢ a variable in Moedel 3, Between 2
p.m. and & p.m. thete appears to be a significan! contrast between mid-wezk and Sahuday effects. However,

this addition cnly explains about an additional 1 percant variance for 2ach hour as compared to Model 3.

n
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For each of the three CEC regions, model r-squared are fairly high from early afternoon
to evening. R-squared for the late afternoon and early evening models (between 4 p.m,
and 3 p.m.) 1s lowest for CEC region 4, For both CEC region 2 and CEC region 4,
model r-squared 1s remarkably low for soine hours of the day: less than 0.50 and as low
as 0.24 between 4 a.m. and 10 a.m. for CEC region 2, and less than 0.50 between 6
a.m. and 9 a.m. ior CEC region 4. These low r-squared values are in part a consequence
of the low occurrence of cooling loads in these hours and perhaps heating ventilation
loads. Given the small proportion of cooling loads which occur dunng these early
morning hours, the low r-squared values are probably of little concem.

In Chapter 6, the results of our evaluation of these models is presented.,

Additional Thoughts on Hourly Model Development

The use of hourly weather response functions is a relatively new application for HELM.
We have taken this opportumty to consider an alternative approach and issues that stem
from the basic analysis presented above.

Pooled-Hours Models vs, Hours-Separate Models

As an alternative to the hours-separate models presented above, we alse pooled all hours
and estimated coefficients for each of the four models, using Summer data for CEC
region 3. In this regression, we allowed the intercept term to vary depending on hour of
the day, but otherwise the data were taken without regard to hour {that is, am analysis of
covariance model with first-order effects of the categorical variable HOUR.) This pooled-
hours model restricts the (multidimensional) regression plane (o be the same for all
hours, except for a shift in location of the plane corresponding to the coefficient for hour
{an intercept term),?® In contrast, among a set of hours separate models the regression
plane can vary freely. Table 5-7 summanzes these models. Although the r-squared for
these models is high (0.92 for example, for Model 3 with hour as a categorical variable)
the models do not predict loads as well as do the hours-separate models.

Defining prediction error as the sum of squared residuals for a given set of hours, we
compared the hours-pooled to the hours-separate models. Prediction error for the hours-
pooled model is. of course, necessarily higher than for the corresponding hourly

®]

n a simple linear regression (one covanaie) the slape of the regression line would remain the same but

shift in position along the diraction of the y-axis.



regression model, For example, the prediction error for 7 p.m. is 38.4 for the hour-
specific Model 3, but 41.5 (or 8 percent higher) for the hours-pooled Model 3.

These findings underscore the problem of relying too heavily on r-squared as the sole
basis of judging models.?” In this case, a series of individual hourly models, each with
lower r-squared, has better predictive capabilities than a single, pooled model with higher
r-squared. This observation, in turn, moetivates cur examination of the comparative
predictive capabilities of all of the models in Chapter 6.

I_Z.J'l
Ch
2

Long-Term Temporal Patterns in Model Residuals

In pur examination of residuals from the annual regression models {Chapter 3), we noted
some strong temporal patterns. These patterns were also observed in our analysis of
hourly lpads.

Figure 5-2 shows the annual distribution of residuals from Model 3 for 7 p.m. load; the
solid herizontal line at zero indicates the average residual. The distribution of residuals
varies dramatically from year to year: the third quartile of the distnbution of residuals
in 1986 is at about zero, which is the same level of the first quartile of the distribution
of residuals in 1988; 75% of the 1986 7 p.m. loads are over-predicted by the hourly
model, whereas 75% of the 1988 7 p.m. loads are underpredicted by the hourly model,
Figure 5-2 also shows the time-ordered values of the 7 p.m. residuals together with a
smoothed line through the data. Residual patterns for other hours are sinmlar, Note that
Summer 1988 was particularly hot, which may motivaie behavieral factors or correlate
with other faciors not adequately caplured by our regression model. But when we
examined patterns of Model 3 residuals for CEC Reglons 2 and 4, we did not find
similar patterns. Of course, strong residual patierns could also be a reflection of data
anomalies, rather than of shifts in regional loads.

“ For example, in a simple tinzar model: if the frue modal is Ey [i] = & + b (x[i] - x), wilh

r 2 - - - . 3 sl nnd g
Var (¥} = @° ! r increases as 1 decreases, h imcreases, and E {x[{}-x3)° /n increuses.
i
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Table 5-1. Variables Usad in Hourly Central Air Conditicner Load Regressions

Variahle Name Definition
HOUR ....... Hour of day (1 thiough 24)
LOAD .. ..., .. Repianal average load for HOUR
AVGDRY ..... Average daily dry bulb temperature far day
CLDCVR' ..... Amogunt of sky covered by cloud layers {0-10)
DAYTYFE .. ... Weekday or Weekend/Hoeliday
HOLR =1
DRYTMP[N]
DRYSUMS ., ,  "HOURS
DRYTMP ... .. Dry-huib temperature
THI ... .. ... Temperature-Humidity Index [15 + 0.4 x (DRBYTMP + WETTMPI]
THIB ........ Max (THI-68, O}
THIBSQ ...... THIB * THIB
HOUR~-|
Y. THIB[M]
THIBSUME . Hoee
WETTMP .. ... Wet-bulb temperature
WNDSPD' ., ., . Wind spead in knots

' Not available from PGRE weathar stafions



Table 5-2. Summary of Model 1* Hourly Regressions for CEC Region 3
Summer Season

Significant Variables (p<(.05]

Hour of Day WETBLB DRYBL CLDCVR WNDSPD r-squared
|

1 n/a
2 n/a
3 v v 0.59
4 v v 0.55
5 N v v 0.50
6 v N} 0.46
7 J N 0.42
8 v v v 0.47
8 v v N 0.51
10 N N 0.50
11 v v v 0.54
12 N v v 0.68
13 v J N 0.63
14 J v v 0.69
15 ) v ~ 0.72
16 v J ) 0.75
17 v v Y 0.77
18 J v J 0.81
19 N v ) 0.82
20 J v v v 0.81
21 N 4 J v 0.a1
22 N/ v v J 0.77
23 J v V v 0.73
24 N v J 0.68
* MMadsl 1: Load = f (WETBLB, ORYBLE, CLDCVR, WNDSPD, errarl




Table 5-3. Summaeary ef Model 2* Hourly Ragressions for CEC Region 3
Summer Season

-Significart Variables |
‘ (p=0.05) :

Hour of Day THIB “THIBEUNMSE | r-sguared
1 N N 0.76
2 v v 0.72
3 N v 0.74
4 N v 0.73
5 v Vv 0.69
8 v N 0.67
7 v v D.65
8 v v 0.66
9 J J 0.73
10 N N 0.74
11 v N 0.78
12 v 0.80
13 v Ny 0.82
14 v N 0.83
15 N 0.83
16 N 0.83
17 N 0.82
14 N v 0.84
139 Y v 0.94
20 v N 0.82
21 N 0.83
22 J v 0.82
23 N N 0.80
24 J J 0.77
* Madsl 2: Load =F [THIB, THIRSBMS, error}
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Tabie b-4. Summary of Madel 3* Hourly Regressions for CEC Region 2
Summer Season

Significant Variables {(p=<0.00) _

Hour of Day DAYTYPE THIS THIBSQ THIBSUME r-squared
1 ~ N N 0.52
2 N N N 0.80
3 N N 0.77
4 N N 0.75
5 N ~ 0.71
6 ~ N 0.68
7 N N/ 0.66
B N N N 0.67
9 N N/ 0.75
10 N N/ 0.75
11 N N 0.78
12 ") 0.81
13 N/ N N/ 0.83
14 v v ~ ~ 0.84
15 N N N N 0.84
16 N N < N 0.86
17 N ) ~ ~ 0.8%
18 N N N 0.B7
19 < N/ N 0.88
20 N N N 0.88
21 ~ v N 0.89
22 V v v 0.88
23 N N/ + 0.87
24 N N/ N 0.84
* Model 3: Lead = { DAYTYPE, TH!B, THIBSQ, THIBSUME, arrorl
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Table 5-5. Summary of Model 3* Hourly Regressions for CEC Region 2
Summer Season

, Significant Variables (p=0.05}

Hour of Day | DAYTYPE  THIE  THIRSO.  THIBSUMS r-squared
1 Y v v 0.66
2 V v v 0.56
3 N v v 0.54
4 N v Vv 0.41
5 v v v 0.33
5 v v v 0.24
7 v v 0.29
B N 0.24
9 v v J 0.32
10 v v 0.45
11 v v 0.63
12 v v 0.69
13 N J V .77
14 N V v 0.582
15 NG v v 0.85
18 J N J .86
17 N N v 0.86
18 N J v 0.88
19 ) v v 0.88
20 v v v 0.88
21 v N 0.86
22 N v 0.54
23 v v 0.79
24 v v v 0.74
* Model 3: Load = f ([DAYTYPE, THIB, THIBSQ, THIBSUMS, erran




Table 5-6. Summary of Model 3* Hourly Regressiocns for CEC Ragion 4
Summer Season

~ Significant Variables (p=0.0b)
Hour of Day DAYTYPE THIE THIB5Q THIBSUMS r-squared
1 ~J’ ¥ v 0.72
2 N N N 0.68
3 J v ™ 0.66
4 v N NJ 0.71
b ) 0.53
g J . N 0.47
7 v .32
8 J 0.37
9 N N Ny 0.53
10 N N) N 0.71
11 J J 0.74
12 N N 0.77
13 N N) N 0.79
14 N J N 0.82
15 v ) N 0.83
15 ) ) N 0.83
17 v v N 0.82
18 N N ) 0.80
19 N/ N v 0.79
20 N v v 0.81
21 N N 0.86
22 N ) 0.86
23 v J V n.83
24 N v N 0.74
* Model 3: Logad = [ (DAYTYPE, THIB, THIBSQ, THIBSUMS, grror)




Table 5-7. Summary of Hours-pooled Regression Resulis for Summer
CEC Region 3

Significant Variables r-squared

HOUR*, DRYTMP,

Model 1. CLOCVR, WNDSPD 0.77

Modal 2. HOUR*, THIB, 0.85
THIBSUM®S
HOUR*, DAYTYPE,

Maodel 3. THIB, THIBSAQ, 0.92
THIBSUME

HOUR, WETTMP,
CLDCVR,WNDSFD,
Modal 4. THIBSUMSG, THIBSO 0.9z

* HOUR iz a categariecal [“tactar”} variable in these modals,

40




Table 5-8. Comparison of Prediction Errars in Salactad Hours for Modzal 3
Based on Peak Day Subset to Model 3 Basad on Al Summar Davs, for CEC
Ragion 3

Prediction Error Among Peak Day

Subset'
Hour of Oay
Regression Model:
lLoad =f(THIB, THIBSQ, THIBSUMGE, errar 16 17 18 19
Hourly models based on all Summer days* 5.3 5.3 5.4 5.5
Hourly models based on peak day subset 3.6 J.4 2.5 2.4
[r-squared) 10.60)  {0.671 {0.641 {0,69]

1

19ES, based on PR&E systern load data provided by CEC
seg Table 5-4 for summary of regression rasulls far these madels

2
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Figure 5-2. Temporal Patterns in Residuals for 7 p.m. Hourly Load Model.
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Chapter §

Comparison of Cooling End Use Modeis

In this chapter, we compare load shape predictions from a variety of maodels for the
cooling end use. From the present report, we compare predictions from: (1) the daily
WRFs along with the corresponding hinned load shapes, discussed in Chapters 3 and 4,
and (2) the hourly WRFs, discussed in Chapter 5. From previous L.BI. work (Eto and
Moezzi 1992), we also compare (3) CEC’s Peak Demand Forecasting Model using the
grand time-temperature matrix developed by I.BIL. from 1985-1985 AMP data; and (4)
CEC's Peak Demand Forecasting Model using region-specific time-temperature matrices
developed by LBL from 1985-198% AMP data. Finally, irom PG&E's and CEC's
existing peak models, we compare (5) PG&E’s daily WRFs used with corresponding
PG&E-developed binned load shapes; and (6) CEC’s Peak Demand Forecasting Model
using CEC's time-temperature matrix.

The comparisons are conducted by examining the differences between the sample average
loads developed from the AMP data and the loads predicted by each model. Separate
evaluations are conducted for each geographic forecasting aggregation {one for each of
the three PG&E zones and one for each of the three CEC regions). Note that not all
models were developed for each PG&E zone or CEC region.

This chapter 15 organized in six sections. First, we discuss model-specific implementation
issues that provide additional information on the methods used to develop model
predictions for comparnison to the AMP sample loads. Second, we describe the overall
approach used to compare the models, including a discussion of the measures we
developed to assess the performance of the models. In the third section, we present our
findings for the models developed to forecast load shapes for CEC reglons, while in the
fourth section we present findings for the models develeped to forecast load shapes for
PG&E zones. Fifth, we identify considerations that influence the interpretation of resulfs.
Sixth, we summarize our findings.
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6.1.1

Computation of Predicted Loads

In this section, we desctibe how we computed the predictions’™ used for model
comparison. Tahles 6-1 and 6-2 indicate the models being compared for CEC regions
and PG&E zones, respectively. Note that not all models were developed or available for
each CEC region and PG&E zone. Also recall that, for the models reported on in
Chapters 3 and 4, separate seasonal models were estimated for each CEC region and
PG&E zone.

L.BL Daily Regressions with LBI. Load Shape Libraries (LBLWRF)

Using the models developed in Chapier 3, we compulted daily energy estimates for each
CEC regicn (models summarized in Table 3-3) and for each PG&E zone (models
summarized in Table 3-4). We computed hourly load estimates by scaling the appropriate
binned load shape (defined for each CEC region and PG&E zone by Season, Daytype,
and AVGDRY) by the dzily enerpy estimate from the regression model. We refer to this
model as LBLWRF. Recall that some days were not used in the regressions: (1) days
in winter (November through March) season; and (2) days with average dry bulb
temnperature below the minimum specified for the regression (62.1 for CEC region 2 and
PG&E zone §, 66.2 for CEC region 3 and PG&E zone R, and 58.6 for CEC region 4
and PG&E zone X). Predicted cooling load for these days is always zero, following
FG&E convention. The five-year sum (omitting winters) of predicted leads for this
model will therefore be less than for the AMP sample to which it is compared, because
days below a certain temperature are modeled as zero but in fact the AMP sample may
report small non-zero loads on these days™.

# Throughout this chapter, we use the term prediction loosely to indicate loads estimated by model on the
basis of abserved data, although they are techmically not predictions since the same data is used to develop the
models as w evaluate them. A more accurate term for such esiimates might he backcasts.

' For accounting purposes, one could model the omitad days with a season-specific mean for those
computed days. Under sueh a procedure, sample anid model total energy would match (ignornng winter),
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5.1.2

6.1.3

LBL Hourly Yeather Response Function (LBLHWREF)

Using the hourly WRFs of Model 3 {reported on in Chapter 5), we computed a second
set of hourly load estimates. Model 3 consists of 24 separate hourly models for each
CEC region for each of three seasons {(spring, Suminer, and fall, using the same season
definitions given in Chapter 3).* We derived daily load estimates for this model by
adding together the 24 hourly estimates for each day. We refer to this medel as
LBLHWRF. The five-year sum {(omitting winters) of predicted loads for this model 1s
necessarily the same as that of the AMP sample.

These models were developed for CEC regions only, not for PG&E zones, pending the
outcome of the evaluation presented in this chapter.

CEC Peak Demand Forecasting Approach with LBL Matrix (LBLMAT)

LBL. has previously developed space conditioning models for an older forecasting model
used by CEC, called the CEC Peak Demand Forecasting Model {Eto and Moezz1 1992).
This approach is similar to that of LBLWRF. First, an allocation of energy 1s made from
year to day. Second, an allocahon is made form day to hour. In this approach, a time-
temperature matrix replaces the use of binned load shapes for the allocation of daily
energy to hours of the day.

To generale daily hourly load shapes, we used a ume-temperature matrix developed by
[.BL from AMF data. 'This matrix was developed using 1985-198% AMP data from all
regions to develop 2 “raw™ matrix, and subsequently smoothing the surface of the
resulting matrix. The development of this matrix has been described previously (Eto and
Moezzi 1992). The malrix is used to generate a load shape for a day by assigning 24
values from the matrix, corresponding to 24 hourly values of THI1. The resulting load
shape is converied from the units in which the matrix is expressed (kWh/hour) inio a
load profile by dividing by the sum of the 24 hourly loads, so that the load for each hour
is expressed as a percentage of the total daily load.

This load profile is then re-scaled by multiplying each hourly value {normalized to sum
io one) by a daily energy estimate compuled in a separate phase of the model, LBL did
not examine the methods used in this second phase of the CEC model. Accordingly, we
rely on CEC's current specification of the daily energy allocaton in 1ts Peak Demand
Forecasting Model and used them Lo develop predictions for CEC regions.

* Chapter 5 included summarias of resulis enly for the summer season models.
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The CEC Peak Demand Forecasting Model for the residential sector allocates estimates
of annual conditioning energy consumption to daily consumption according to the relative
values of WTHI-DD for the day and long-term average annual THI-DD (see Table 3-2
for definitions of these variables). For a given day {, the allocation is as follows:

Daily Energy[i] = (WTHISUM[:|/ATHISUM) * AC

where

WITHISUM] /] = 0.6*THISUM[{] + 0.3*THISUM[:-1] + 0. I*THISUM[-2]
24

THISUM = Y max (TA! [A] - 68, 0)
A=l

ATHISUM = Long-term annuval average sum of THISUM far the year

AC = Annual electricity consumption for central air conditioner
[kWh/y]

Yor our model evaluations, we modified the procedure by (1) replacing ATHISUM by
the sum of daily WTHISUM between 1985 and 1989; and (2) defining AC as the five-
year (1985-1989) UEC for central atr conditioner load, computed from the AMP sample.
Thus, for day { we scale the load profile generated from the time-temperature matrix by
the factor:

Daily Energy[i]=[WIHISUM[] /Y. THISUM[1l= Y UECTY]

Jelavsiti-29) ve(B83-89}

Once again, these factors are defined separately for each CEC region (e.g. using data
from the NOAA Fresno weather station and the UEC for CEC region 3 AMP sample to
denve estimates for CEC region 3).

The modified compuiations necessarily produce a UEC which matches sample UEC for
the five years combined”. Note that this energy allocation procedure is not directly
based on modeling sample loads, whereas both LBLWRF and L.BILHWRF are based the

7 We considered re-scaling sepurately for each year, mther than using a five-year toml, but rejected this
since for appropriate comparison, regression madel results wounld also have to be re-scaled to produce one-year
UECs {which 13 unreasonablz).



6.1.3

AMP sample daia®. This madel produces daily energy estimates that, when summed,
equal the corresponding five-year observed energy totals from the AMP sample
(including winter). According to this model, the peak load occurs on the day with the
highest value of WTHISUM.

CEC Peak Demand Forecasting Model with LBL Raw region-Specific Matrices
(LBLRAW)

Using different time-{emperature matrices, but the same daily energy allocation procedure
as that described for LBLMAT, we derived another set of hourly and daily load
predictions for CEC regions 2, 3, and 4. For each region, we used a time-temperature
matrix based on data from that region alone, e.g. o model CEC region 2 we used a
matrix which was derived on the basis of 1585-1989 AMP dala for residences assigned
to CEC region 2. We used “raw” (unsmoothed) malrices for these computations,
whereas tor the LBLMAT predictions we used a smoothed matrix.

These models were developed for CEC regions only, not for PG&E zones.

CEC Peak Demand Forecasing Model with CEC Matnx (CECMAT)

Using the time-temperature matrix currently used by CEC (not developed by LBL), along
with the same daily energy allocation procedure described previously for LBLMAT (also
developed by CEC), we derived CECMAT predictions. Once again, these maodels were
developed for CEC regions but not PG&E zones.

PG&E Daily Regressions with PG&E Load Shape Libraries (PGEWRF)

We generated hourly load predichions for PG&E zones for 1985-1989 from PG&E’s
current HELM input files of daily WRFs and corresponding binned load shapes (which
were developed by PG&E on the basis of 1989 AMP data).” We re-scaled the energy
estimates (which were expressed in units of PG&E sector-wide energy) to produce the

* One might also consider using the load shape derived from the time-temperature matnix itself, rather than
the cwrrent practice of normalizing it and re-scaling it with this “exizmal™ allocation procedurs.

#* Estimates were raceived by LEL from CEC 3/26/92 fwith letter daled 1/24/92) in lhe files
CZRRESAC.T., CZSRESAC.T, and CZXRESAC.T.
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6.2

same total energy as did the LBLWRF above™, Estimates were provided for all hours
within the five-year period, whereas LBLWRF estimates are missing for some hours,
because of missing weather data.

These models were developed for PG&E zones bui noi for the CEC regions.

Methods of Comparison

The basic approach for the comparisons was to develop, for each model, a prediction of
hourly load for each hour of the five year period for which AMP data were obtained,*
We then compute the difference or residual between the model-predicted loads and the
average loads from the AMP sample (by CEC region or PG&E zone, as appropriate),

We selected three measures upon which to base our evaluations: (1) daily energy use; (2)
maximum hourly load; and (3) 4 p.m. lpad. Figure &-1 illustrates how the last two
measures were calculated. Note that the hour of the predicted maximum hourly load may
be different than the hour for observed maximum hourly load. We perform an hour-
specific comparison for 4 p.m. because 4 p.m. is often the hour of PG&E’s system peak
load in the summer,

We use boxplots to describe the distribution of residuals for each model and for each of
the three measures, separately by season and geographic aggregation. A boxplot is a
graphical representation which provides a concise description of a distribution, While
a histogram describes a distribution by showing the frequency or relative [requency for
set bins defined by the range of the variable, a boxplat, in contrast, describes a
distribution by indicating which values of the variable correspond to set percentiles of the
cumulative distribution, for example, the first quartile (which equals the twenty-fifth
percentile). The most advantageous aspect of a boxplot represeniation is that il provides
for easy side-by-side comparison of distributions,

Figure 6-2 is an example of this form of presentation. Each boxplot is comprised of a
hox with lower and upper ends at the first and third quartiles of the distribution; a white
line inside the box indicates the median of the distribution, Connected to the box are

* That is, the hourly load eslimates received were expiessed as sector loads. We re-scaled these data to
match observed UEC by allocating UEC proportionally to secior loads. This re-scaling and subsequent
compansons may bias resulis, since sector load tends io increase with lime, whereas sample average load does

nol.

“ Recall that we did noi model cooling loads for Winter, tmplicitly setting these loads to zero.
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"whiskers”, which are drawn at the nearest value not further than 1.5 times the
interquartile range from the nearer quartile, indicating the spread of the bulk of the data.
Points lying outside this range are marked individually (by horizontal lines) on the plot,
so that the full range of the data is represented on the plot.

Generally speaking, there are two aspects of goodness of fit represented by the box plot:
First, the location of the median load indicates the central value of difference between
the predicted and observed values; with fifty percent of the residuals above (in signed
valug) than this median value, and fifty percent below the median value. Since we are
examining residuals, a median value at 0 indicates that the prediction corresponding to
this residual matched the observed value exactly. We would thus deduce that the "central
tendency™ of the predictions is to predict observed values accurately, Second, the height
of the box and whiskers indicates how "tight" is the fit in terms of dispersion around th
mean, other things being equal, a tight dispersion is better than a wide dispersion of
residuals. In an absolute sense, the location of the median 1s probably more important.
On the other hand, if the dispersion of residuals is relatively tight, there may he a
systematic bias which can be corrected, thereby moving the mean closer to zero.

Since model performance on peak days is of particular importance for forecasting
applications, we make a separate comparison for a handful of system peak load days (in
addition to making model comparisons by season). We identified 50 system peak load
days based on daily 1983-1989 PG&E system load data provided by CEC and called
these days the Peak Day Subset. A system peak load day was defined by computing the
ratio of daily system load to the annual system load for each day of the year and then
sclecting the days with the fifty highest values of this ratio over the five year period.*
Note that as a result, the peak day subset may not contain the 50 highest cooling peak
loads. This method of day selection has the advantage of being “external” to the data,
that is, the criteria for selection of days is independent of the sample data.

6.3 Rcs.ults of the Model Comparisons for CEC Regions

As indicated on Table 6-1, five models were compared for the three CEC regions: (1)
LBL’s daily Weather Response Functions and binned load shapes (ILBLWRF); (2) LBL's
hourly Weather Response Functions (LBLHWRF); (3) LBL.'s grand, smoothed THI
matrix with CEC's daily energy allocation procedure (LBLMAT); (4) LBL's raw, un-
smoothed, regional THI matrices with CEC’s daily energy allocation procedure
(LBLRAW); and (5) CEC’s current THI matrix and daily energy allocation procedure

*¥ We “standardized” loads in this manner to adjust for the generally increasing annual system toad over the
five vears.
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(CECMAT). Since the last three models rely on the same CEC daily energy allocation
procedure, the residuals from the predictions of dailly energy use are identical.
Accordingly, we report only a single residual for these three models in the comparisons
of daily energy use (labelled MATRIX).

Model comparisons are presented in a standardized fashion (o facilitate evaluation. A
single page of compansons presenting results for each of the three performance measures
{daily energy use, peak hourly load, and 4 p.m. load) for all regions (2, 3, and 4) for
the peak day subset (Figure 6-3). We describe results for the system peak days separately
from those for the three seasons. For ease of presentation, the results for the three
seasons are discussed here, but the graphic summaries are contained in Appendix .

Model Performance for System Peak Days

Figure 6-3 shows the distributions of residuals among days in the Peak Day Subset (the
days with the fifty highest ratios of system to annual load between 1985 and 1989). The
plots are arranged so that each column corresponds to a CEC region and each row
corresponds to one of the three measurements of prediction accuracy. Note that residuals
are not restricted to have mean zero within this subset (since the restriction to mean zero
1s for all data within a Season or all data n the five-year subset, but not necessarily for
any subset thereof).

The matrix-based models tend to underpredict daily energy among the Peak Day Subset
substantially, particularly for CEC regions 2 and 3. This tendency towards
underprediction again carries through to the CECMAT, LBLMAT, and LBLRAW
predictions of maxiraum hourly load and 4 p.m. load. LBLWRF (except for CEC region
2) and LBLHWRE also tend to underpredict daily energy among the Peak Day Subset,
but give much closer predictions than do the matrix-based models, LBLWRF tends to
give the best predictions of maximum hourly load and 4 p.m. load for CEC regions 2
and 3 among the models compared, although LBLHWRF does nearly as well.

We examined model predictions for the two days with the highest ratio of daily system
load to annual system load: 18 July 1988, and the following day, 19 July 1988. Table
6-3 lists, for these two days and each CEC region and model, predicted daily load, the
residual carrespanding, to that prediction (in companson to the corresponding AMP
sample average load), and the rank of the absolute value of the residual among those for
the approximately 460 summer season eslimates generated by the model for the region.
The matrix-based approach gives its highest underpredictions on these two peak days
{e.g. the bizgest undeprediction among 1985-1989 estimates for CEC regicns 2 and 3 on
July 18, 1988), Roth LBLWRF and .LBLWRF also show large underpredictions for these
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6.3.2

days, relative to the models’ predictions for other days. Predictions are particularly low
for CEC region 3 on July 19, 1938,

Owverall Model Performance for Three Seasaons

Figure C-1 shows the distribution of medel residuals for CEC region 2 for each of the
three measures of model predictions compared (daily energy, maximum hourly load, and
4 p.m. load) by season. The data for each stahstic are plotied on the same scale (across
season and across CEC regions), so the boxplots may be easily compared. The median
daily energy residual for the matrix-based models (which allocale daily energy
proportionately to WTHIDD) is below zero for all seasons, indicating a tendency to
overpredict energy (recall that the average prediction is necessarily near zero as a
consequence of model scaling, see discussion in Section 6.5). For the summer season
in particular, the matirix-hased models yield some large underpredictions of sample loads.
The regression-based approaches, LBLHWRF and LBLWREF, perform ahout the same,
both predict considerably better than the matrix-based approach. The tendency of the
matrix-based approaches to overpredict daily energy carries through to the other two
characteristics compared (since both of these are generated by scaling relative hourly
loads by daily energy estimates). Thus, for maximum hourly lcad and 4 p.m. load,
LBLHWRF and LBLWRF again perform substantially better than the matrix-based
approaches {showing relatively small spreads), with LBLWRY performing slightly better
than LBLHWRF for most comparisons.

Figure C-2 shows the distribution of model residuals for CEC region 3. Resulls are
similar to those for CEC regicn 2. Again, the daily energy allocation procedure used
for the matrix-based eslimales leads to some large underpredictions of daily energy in
summer.

Figure C-3 shows the distribution of model residuals for CEC region 4, which is the
mildest of the three climate regions, 1n this case, the matrix-based approaches perform
somewhal better than they did for CEC regions 2 and 3. For example, daily energy
predictions for the matrix-based approach are about as good as those for LBLWRE and
LBLHWRF for summer. Among the medels compared, however, LELHWRFE performs
the best for predicting both 4 p.m. load and maximum hourly load.
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6.4

6.4.1

6.4.2

Results of Model Comparisons for FG&E Zones

As indicated on Table 5-2, lwo models were compared for the three PG&E zones: (1)
LBL’s daily Weather Response Functions and corresponding binned load shapes; and (2)
PG&E's daily WRFs with corresponding binned load shapes, The presentation of results
follows the structure used for the presentation of CEC results.

Madel Performance for System Peak Days

Figure 6-4 shows the distribution of model residuals for the Peak Day Subset, for each
of the three PG&E zones. For PG&AE zone R, LBLWRE gives unbiased predictions for
these days, whereas PGEWREF tends to overpredict. For PG&E zone 5, both models
tend to undepredict slightly daily energy and 4 p.m. load. The distribution of residuals
for PGEWRF are in most cases only slightly broader, if at all, than the corresponding
distributions for LELWREF.

Overall Model Performance for Three Seasons

Figures C-4 through C-6 show the distribution of model residuals for the three PG&E
zones, by season. Recall that LBLWRF necessarily has a residual distribution centered
on zero, whereas PGEWREF does not (due to the energy scaling mentioned in Section 6.1
and commented on in Section 6.5).

For PG&E zone R (Figure C-4), PGEWRF tends to overpredict daily energy, and
correspondingly overpredict maximum hourly load and 4 p.m. load. For this zone and
for each of the three statistics, LBLWRF yields a considerably tighter distnbution of
residuals than those from PGEWRT. For PG&E zone S (Figure C-5), the most notable
result is the poor predictions from both LBLWRF and PGEWRF for summer, LBLWRF
works slightly better than PGEWRF for spring and fall, primarily because of occasional,
large overpredictions by PGEWRF. For PG&LE zone X {Figure C-6), PGEWRF gives
unbiased predictions overall for all statistics in spring and sumimer, with again a tendency
to overpredict fall loads, While LBLWRF again gives noticeably higher distributions of
residuals than PGEWRF for this zone, the difference in LBLWRF and PGEWRF
performance is relatively small, which is somewhat surprising considering the fact that
PGEWRF was developed on a small subset of the AMP data,

In summary, LBLWRF gives betier predictions than PGEWRF for all zones, with
PGEWRF having a lendency to overpredict loads. As noted 1n Section 6.1, PGEWREF
estimates are available for all hours 1985-1989, which implies that missing weather data

e
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6.5

6.5.1

were filled in some cases; this may give a disadvantage to PGEWRF in our evaluations,
since no eshmates (and hence no comparisons) were made for LBLWRF on days with
missing weather data.’?

Interpretation of Results

In general, the distribution of residuals from a good predictive mode! would be centered
at zero and be clustered relatively tightly about zero. However, the results of the
evaluations in this chapter must be interpreted cautiously, since (1) the location of the
distribution (1.e. where it is centered relative to zero) is a consequence of the scaling
procedures used, which in some cases restricts the location to be near zero; and (2)
model “predictions” are not truly predictions in the purest sense of the word, since the
same data used to develop the model was also used to evaluate the predictions (except
for the daily energy allocation procedure of the matrix-based models).

Energy Scaling

As described in Section 6.1, we scaled the output from each model to correspond to a
fixed total energy computed over the five years of AMP data. In practice, energy
allocations are based on externally-specified scaling factors, e.g. in the HELM forecast
file."® Because of this scaling, the average difference between observed and predicted
values for matrix-based model estimates must be zero when averaged across the entire
five-year period, That is, the prediction is necessarily on average an unbiased estimate
of the observed load, because of the method by which predictions were constructed. This
restriction is appropriate because energy scaling is a procedure distinct from the portions
of the models we examined,"

Standard linear regressions always result in regression residuals which overall have a
mean of zero. Since the same daia were used to build regression models as to generate
predictions, the average residual for each season’s LBLHWRT model 1s zero (e.g., the

* Omitting compansons for both models on days with nussing weather data (or deriving LELWRF
estimates for those days, as was apparently done for the PGEWRF modely may provide a fairer comparison of

the models.

“1f one were forecasting AMP sample averages, forecasts would, of course, be binsed high or low (ar

unbiased) depending the accuracy of the energy eshimales used for lke forecasts.

* Since winler season was omitted from our comparisons, however, the mean residual over the days
compared may not be exactly zero.

Ln
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mean residual for 1583-1589 summer season combined for CEC region 3 predictions is
zero). Also as a result of the regression techmique, the average residual for each
yeason's LBLWRF model are slightly above zero (but not exactly zero, because
LBLWRF assigns cool days a load of zero, whereas the AMP sample indicate small non-
zero loads on even some of the coolest days). Since the PGEWRF estimaies were re-
scaled Lo yield the observed AMP sample UEC, mean residuals for this model are also
zero, when averaged across the five years (including winter).

Thus, by design, the average model residual for the models compared should be zero or
nearly so. Consequently, model predictions should be compared on the basis of (1) the
spread of residuals about the mean (e.g., the vanance, range, etc,) when comparison are
moede over all days; and (2) both location and spread for residuals for peak load days,
since this evaluation does not restrict estimates to be unbiased among peak days.

6.5.2 Cross-Validation

Our evaluations use the same data to assess models as were used to construct them: (1)
the LEL matrix models (LBLMAT, LELRAW) and LBL daily WRF model with binned
load shapes (I.LBLWRF), and the LBL hourly WRF model (LBLHRWF) were all
developed on the basis of 1985-1989 AMP sample data; (2) the PGE daily WRF and
correspending binned load shapes was developed on the basis of 1989 data; and (3) as
described above, the energy scaling for all models 1s restricted to match that in the AMP
sample. To the extent that the same data are used for model development as for model
assessment, results may be more favorable than if the assessment were conducted out-of-
sample.

One approach to address this issue would be to use cross-validation; that is, use one part
of the AMP sample to build models and a different part to assess them®’. While this
approach would lead to more robust models from the standpoint of predicting sample
loads, it remains a step removed from the ultimate forecasting objective, which 15 to
forecast system, not sample, cooling loads. We return to this issue in Chapter §.

= This would be fairly complicated bowever, and, in our opinion, l=ss lmportant than assessing other
aspeets of model performance relatve to forecasting systenwwide cooling loads,
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6.6

Summary

We have evaluated the performance of a variety of models for forecasting coaling load
shapes for CEC regions and PG&E zones. Within the context of this evaluation, we find
that the LEL madels developed in this project perform better than previous approaches
used by CEC (including those developed previcusly by LBL for CEC using AMP data)
and PG&E. Between the LBL daily Weather Response Functions and associated binned
load shapes and the LBL hourly Weather Response Functions, we {ind that, while the
hourly models yield slightly better results for a few measures of model performance in
some regions/zones and seasons (notably 4 p.m. loads), the daily models perform as
reliably or better than the hourly models in most cases. Hence we consider the daily
models at least as reliable as the hourly models overall, Generally speaking, the models
do not perform as well in the more temperate region 4 and zone X.
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Table 6-1. Models Compared for CEC regional Lead Shape Forecasting

Model ~ Allocation 6 Day Allocation to Hour

Data Source Used
LBL Daily Weather
LBL gaily WRF Response LBL Binnged Load PG&E AMP -
Functions Shapes region/ Season?
LBL hourly WRF  LBL Hourly Weather Response Functions PGRE AMP -
region/ Season®
CEC matrix CEC Weighted THI  CEC THI Matrix CEC
LBL smoothed CEC Weighted THI  LBL Grand TH] FG&E AMPF - All
matrix Matrix regions’
LBL raw matrix CEC Weighted THI  LBL “Raw” region PG&E AMP -
Matrix region'

1 see Eto and Moezzi {(1382) {or & descriplion of the development of this model
2. see Chaptler 3 ond 4 ot this report tor a desenplicn of the development of this madel
3. swe Chapter 5 for a descnption of 1the developrient of this model
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Table 6-2. Models Compared for PG&E Zonal Load Shape Forecasting

Maodel Allocation to Day Allocation to Hour  Data Source Used
PG&E Daijly

PG&E daily Weather Response PG&E Einned Load  PGRE

WRF Functians Shapes
LBL Daily Weather

LBL daily WRF Response ILBL. Binned Load PG&E AMP -
Functions Shapes region/ Season'

‘gee Ghapter 3 and 4 of this report tor a descriprion of the deveiopment of this model




Table 6-3. Comparisan of Model Performance on Top Twao System Load

Days 1985-1989", by GEC region

&0

.. CEC . Pradicted  Difference Rank of
Date -~ - Model -région Load - . for AMF. Difference’
o (kWh/dayl - ~ Load? '
July 18, matrix 2 13.8 20.4 1
1988
LBLWRF 2 a3in 1.0 248
LBLHWRF 2 29.0 5.1 15
matrix 3 16.9 22.9 1
LBLWRF 3 35.2 4.6 48
LBLHWRF 3 35.4 4.4 57
matrix iq 14.1 15.9
LBLWRF 4 32.4 2.4 147
LBLHWRF 4 23.4 8.5
July 19, matrix 2 11.7 13.8 4
1998
LBLWRF 2 25.4 0.3 389
LBLHWRF 2 20.5 5.1 14
matrix 3 15.0 20.5 3
LBLWRF 3 27.0 8.5 1
LBLHWRF 3 26.4 9.0 2
matrix 4 5.3 10.4 16
LBLWRF 4 13.0 2.6 133
LBLHWRF 4 14.3 1.3 155
' days with two highsst values of daily system load/annual system load
' AMP Ipad - predicted Toad
4 rank of absohne vawe of ditference, out of 480 predichions lor summer i1 =
largest absolute dillarsnge)




Figure 8-1. Measures of Hourly Fit
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Chapter

7.1

7.1.1

Exploratory Analyses

Chapters 3 through 6 summanze findings from the major areas of research conducted in
the project. In meetings held during the analysis process, both PG&E and CEC
identified areas of mutual interest, which were outside the primary focus of rescarch,
In this Chapter, we report our findings from exploraiory analyses for a few of these
areas, including (1) explicit specification of heat storms for modeling daily cooling loads;
(2) inclusion of heat pump compressor cooling loads in modeling daily central air
conditioner energy use; (3) modeling daily room air conditioner cooling loads; (4) the
use of alternative weather data for modeling daily cooling loads in CEC region 4; (3)
alternative bin specifications for the hourly load shape librares; and (6) separate
modeling of peak days. Each topic is written in the form of a short, memorandum,
Chapter 8 summarizes outstanding issues remaining from these analyses and other areas
for future research.

Heat Storms

In order to capture explicitly the additional effects that sustained, extremely hol periods
of weather might have on loads, we investipated the possibility of adding an explicit
“heat storm™ vanable (o our linear regression models for daily central air conditioner
loads. We found some evidence that including a such a variable did modestly improve
the load predictions made by daily regression models, but that the effect is probably not
large enough to warrant incorporation into forecasting models.

Motivation

There is anecdotal evidence that the responsiveness of cooling loads 1o weather may be
different during prolonged periods of hot weather than on isolated hot days. Both
thermodynamic (thermal mass) and behavioral explanations have been offered in support
of this evidence.

With respect to forecasting, Ignelzi found significant heat storm effects in their linear
regression madel for Southern Califorma Edison’s (SCE) system load. They defined a
heal storm as four or more consecutive days with maximum average temperatures greater
than 93. Separate variables were included for the sequence of cach heat storm in a
season (i.e., there were separate variables for the firsi, second, and any subsequent heat



7.1.3

storm), The coefficient of each of the three heat storm variables was significant and
positive, with the first heat storm having the larpest coefficient and the third and
subsequent heat storms having the smallest coefficient.

With respect to the daily energy models presented in Chapter 3, the lagged cooling
degree day variables (e.g., CDD93SM1, CDD95SM?2 in Table 3-1), the three-day lagged
average dry-bulb temperamre vanable WAVGDRY in PG&FE’s daily weather response
functions, and the three-day lagged THI varable WTHI-DD in the CEC Peak Demand
Forecasting model are, in fact, altemalive approaches for capturing heat storm effects.

Approach

We considered two issues: first, we examined aliernative definitions of heat storns
based on a combination of temperature thresholds and duration and delermined the
number of ocenrrences of each type for PG&E zones R, S, and X, Second, for the
historic periods of heat storms identified by these definitions, we examined the residuals
from our regression models of daily central air cooling loads (Chapter 3).

Findings

Table 7-1 shows the number of periods lasting at least four days for PG&E weather
stalions in Fresno (zone R) and Sacramento (zone S) and lasting at least three days for
the PG&E weather station in San Ramon® for zone X in which the average daily
lernperature was greater than 75, 80, 85, 90, and 93 degrees, for each historic year,
1985 through 1989, We adopted the convention that a new heat storm began only after
the previous heat storm had ended (e.g., a six-day period of temperatures above 80
counts as only one heal storm},

Table 7-2 reports findings for an alternative heal slorm definiiion based on the frequency
of four-day (Fresno and Sacramento) and three-day (San Ramon) periods with maximum
hourly temperatures (rather than average daily temperature) greater than 9C, 93, and 100
degrees,

3 There were no heal stormns of leneth greater than three days at San Ramon for the selecled emperaiure
thresholds.

* Days for which lemperature data were missing were considered to be balow the heat siorm Lhreshold.
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We investigated the potential explanatory capability (for predicting daily cooling loads)
of several of these heat storm definitions by examining the residuals from the final daily
WRFs for these zones (summarized in Table 3-4) for each day of a healt storm. The
motivation for this approach is that justification for the addition of an explicit heat storm
variable should be based on there being a clear pattern in the residuals from the daily
energy models during heat storms. That is, such a clear pattern in the residuals would
be precisely the phenomena that a heat storm variable would be used to signal (and
thereby “explain” by eliminating the residuals).

Figure 7-1 shows, as an example, the distribution of residuals for PG&E zone R (the
hottest region) for three different heat storms definitions: daily average lemperature
greater than 80, greater than 83, and greater than 90. The first box-plot includes the
residuals for all days with temperature below the indicated limit for all surminer days
from all five years of the data. The second box includes the residuals for all days with
temperature above the limil on the given day but below the lower limit on the preceding
day. The third box includes the residuals for all days with two consecutive daily average
temperatures above the limit and proceeded by a day with an average temperature below
the limit. For example, residuals for the third day of a four-day heat storm are in boxplot
for length 3, and those for the fourth day are in the boxplot for length 4. The last box
groups together the residuals for alfl days of a greater than the indicated number (10, 5,
and 3, respeciively).

The first set of box-plots shows that while the distribution is fairly symmetric about zero
for the 486 summer days with average dry bulb temperature less than 80, the regression
over-predicts for sustained periods with average dry bulb temperature greater than 80,
except for periods of length at least 10, when the regression tends to slightly under-
predict daily loads. The final set of box-plots indicates that the WREF for very hot days
in PG&E zone R tends to under-predict loads, but does not indicate a heal storm effect
beyond this general tendency to under-predict.

These figures suggest that prolonged periods of particularly hot weather in PG&E zone
R may lead to slightly higher average cooling loads than would be expected on a tymcal
day with gsimilar weather, but the effect, in the context of cur PG&E zone R Weather
Response Function, does not appear to be a large one and might to some extent be
thought of as meaning “peak days have higher then predicted loads.” Results might be
different in the milder zones (S and X} or CEC regions (2 and 4).
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7.1.4 Conclusion

Our results for the hot PG&E zone R suggest that adding a heat storm variable fo the
daily Weather Response Function is not likely to substantially improve daily cooiing load
forecasts. Because of the imporiance of predicting and understanding peak day loads,
it will remain appropriate to examine heat storm effects, but most likely in conjunction
with other possible determinants of peak days. Our previous analyses (in Chapter 6) for
example, did indicate a general tendency for LBLWREF, in the comparably hot CEC
region 3 to underpredict loads slightly on hot days. This suggests it may be worthwhile
to examine this tendency in greater detail. We lake up the issue of peak day forecasts
again in Section 7.6 and in Chapter 8.

it



Table 7-1. Annual Number of Heat Storms for PG&E Weather Stations, as
Definad by Daily Average Dry Bulb Temperature

Fresno: 4 ar More Consecutive Days With Average Dry Bulb Temperature

»>75° »B80° > 857 >30¢° > 35"
1885 57 46 8 0 0
1586 82 3 7 0 0
1987 68 24 5 0 0
1988 77 36 21 5 0
1383 58 2G 5 0 0

Sacraments: 4 or Mare Consecutive Days With Average Dry Bulb Temperature

>75° >B0° > 859 >80° >45°
1985 18 3 0 0 0
1586 6 0 0 0 0
1587 14 0 0 0 0
1988 24 4] 0 0 0
1989 4] 0 0 0 0
San Ramon: 3 or More Consecutive Days With Average Dry Bulb Temperature

>75° > 80° > 85" > 90" > 95"
1985 0 0 0 0 0
1986 0 0 0 0 0
1987 2 0 0 0 0
1988 0 0 0 0 0
1989 0 0 0 0 0
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Table 7-2. Annual Number of Heat Storms for PG&E Weather Stations, as
Defined by Day’'s Maximum Hourly Dry Bulb Temperature

Fresno: 4 or More Consecutive Days With Maximum Dry Bulb Temperature-

>90° >95° >100°
1985 61 34 2
1986 71 30 6
1987 60 22 3
1988 61 32 20
1989 56 24 0
Sacramento: 4 or More Consecutive Days With Maximum Dry Bulb Temperature
>90° >95° >100°
1985 35 13 1
1986 28 0
1987 24 5 0
1988 30 16 0
1989 16 4 0

San Ramon: 3 or More Consecutive Days With Maximum Dry Bulb Temperature
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>380¢° >9850 >100°
1985 3 0 0
1986 0 0 0
1987 7 2 0
1988 3 2 0
1989 2 1 0




IL

avg temp > 80

-y
n o o

esidual

n

i

Madel

i
)
m

=10 —
Lengih of Heal S1or6) 1 2 q 4 )
Nuimbar ol Davs 4856 56 44 a7 s 22 VY

o]
~l

9 =10
12 0 B

i}

—_
o

N

'
NS

indei Residuai

'
(554

-10
Length of Heat Storm 0
Nurnber of Days 668 32

-k
B

2
21 1% 14

avg temp > 90

—_
Q

nl % B |

3

Modea! Residual

H
[m}]

=10
Length of Heat Storm 0 1 2 >3
Number af Days 72 5 7

Figure 7-1. Distribution of Residuals from Daily WRF by Length of Heat Storm, PG&E Zore R.




7.2

7.2.

1

[

Heat Pump Compressor

We investigated differences between heat pump compresser loads and central air
conditioner loads in the AMP sample at the level of daily and monthly energy use. We
found aggregate loads to be roughly comparable between lhe two appliance types,
adjusting for the difference in average square feotage of the residences in which the tws
diiferent appliance lypes were metered,

Motivabon

Heat pump compressors use the same technology to provide cooling as do central air
condilioners, but metered data from heat pump compressors cannor simply be included
with those from central air conditioners because heat pump compressors provide heating
as well as cooling, whereas central air conditioners provide only cooling (save for small
heating ventilation loads). Nevertheless, the heat pump compressor data contain
potentially valuable information on cooling loads, which may be useful for forecasts.
For example, if the use of heat pumps in the cooling mode differs significantly from the
use of coohng-only central air conditioners, explicit recognition of these differences in
the forecast may be warranted.

Approach

A comparison between hecat pump compressor and central air conditioner data is
complicated by several factors. First, as mentioned, heat pump compressors are used
to meet heating loads whereas central air conditioners do not. Second, while over 350
central air conditioners were metered in the AMP sample, less than 50 heat pump
compressors were metered; the small sample size for heat pump compressors tends to
make population load estimates relatively imprecise. Third, residences with heat pump
compressors metered are on average larger than those with central air conditipner
metered: for the 1985-1986 AMP participants, the size of the average home with a
central air conditioner was 1750 square feet, whereas the average square footage of a
home with a heat pump was 2200 (Brodsky and McNicoll 1987} or 26% larger. Fourth,
the total household electricity consumption of homes with heat pump compressors 1§
twice that of average homes (Brodsky and McNicoll [987).

We limited our analysis to simple comparisons of energy use on a monthly and daily

basis. For example, the small sample size for heat pump compressors would made
estimation of hourly or daily Weather Response Functions solely on the basis of heat
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pump compressor data impractical. Table 7-3 reports the number of heat pump
compressors metered by geographic region. (The comparable counts for central air
conditioners are presented in Table 2-1 and 2-2.)

Findings

Table 7-4 reports the monthly heat pump compressor UEC (averaged over 1985-198%)
for the regions with at least 10 heat pump compressors metered on average (eliminating
PG&E zone X and CEC region 4), along with average monthly central air conditioner
UECs. For the summer months, heat pump compressor UECs are very close to the
central air conditioner UECs for PG&E zone S, and about 10-20 percent higher than
central air conditioner UECs in PG&E zone R and CEC region 3; this 15 consistent with
what one would expect, based on the somewhal larger average area of homes with heat
pump COMpIessors.

We also compared heat pump compressor loads to central air conditioner loads on a daily
basis. Figure 7-2 is a time series plot of the daily difference between heat pump
compressor load and central air conditioner load, as a fraction of the heat pump
compressor load, for PG&E zone R and S§. Only days with appreciable cooling (ceniral
air conditioner load greater than 5 kWh/day are included). The 1987 data shows ihe
greatest difference, but this difference should probably be disregarded since in the copy
of the AMP dala we used for analyses, half of the expected PG&E zone R heat pump
compressor data is missing. Spikes above the line suggest possible heating. Particularly
for PG&E zone R, there 1s appreciable variability in the day-to-day relative differences
in heat pump compressor and central air conditioner load. Part of this variability may
be due to the small sample sizes for heat pump compressor.

Conclusion

For PG&E zone R and S, differences between heat pump compressor UECs and central
air conditioner TJECs are about what one would expect, given differences in the sizes of
residences sampled for the two apphances. Comparison on a daily basis shows
substantial variation in the differences in sample average loads between the two
apphances, in part, due to the likely presence of heating. Without more information on
the capacity of the heat pumps and central air conditioners, as well as better identification
of heating versus cooling operation, we believe it 1s premature to either combine heat
pump compressor data with central air conditioner data or develop separate cooling
WREFs for heat pump compressors.
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Table 7-3. Number of Heat Pump Compressars Metered hy CEC Region and
PG&E Zones

CEC : "~ - Average Number Metered Per Yaar
Region ‘ C E -~ 1985, 1986, 19838, 19891

2 4

3 32

4 4

PG&F zone

R 20

S 20

X 3

' LBL is apparemly rmissing much of the AMP heat pump comgressoer data for 1937,

Table 7-4. Average Monthly UECs for Heat Pump Compressor (HPC) and
Central Air Conditioner {CAC) far CEC Region 3, PG&E Zone R, and PG&E
Zone S

Average Monthly UEC (kWh/month]
CEC Region 3 PG&E Zone R PG&F Zona S
"HPC CAC HPC. - CAC HPC ‘CAC
January 468 51 435 hY 4399 44
February 201 36 273 a1 311 30
March 231 29 198 33 244 26
April 112 24 108 28 114 26
May 122 az 150 92 110 76
June 273 229 380 336 223 225
July 505 492 683 560 379 J66
August 3318 378 433 448 232 249
September 1563 142 227 173 115 107
Cctoher 92 34 112 40 74 35
November 219 30 207 33 241 29
December 441 54 438 62 h29 53
Source: AMP measuremsnt (1955-1989)
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7.3 Room Air Conditioner

We developed linear regression models for daily room air conditioner loads for those
zones and regions with sufficient data (PG&E zone § and X, and CEC region 4).

7.3.1 Motivation

Room air conditioners are estimated io contribute a small bul not insignificani proportion
of residential cooling loads, with a relatively larger contribution in milder areas. CEC,
which forecasts these loads separately from central dir condiboners, previously forecast
that room air conditioners accounted for 8.4 percent of the combined central and room
air conditioner residential cooiing loads (excluding cooling leads from evaporative
coolersy for all seclors combined, and 5.1 percent, 18.2 percent, and 13.7 percent,
respectively for regions 3, 2 and all others, respectively.®

Relatively few room air conditioners were inetered in the AMP sample.  As with the
heal pump compressors, the small sample sizes tend to make computations based on
sample data less reliable. Despite this imprecision, models based on the room air
conditioner data alone are likely to perform better than those based on central air
conditioner data.

7.3.2 Approach

We modeled average room air condilioner load for each of those regions/zones with at
least 20 or more metered units using a stepwise variable selection for linear regression
based on the same explanatory vaniables used for the development of the Daily Weather
Response Functions for daily central air conditioner load,

* PG&E estimates an 8.6% syslem saturation [or room air condilioners, as compared to 24.7% for central
air conditioners and 2% for heat pumps (Brodsky 1987). 1n CEC’s Revised ER-92 Forecast for 1989 for
PG&E residential air conditioning (single-family, multi-fanuly, and mobile home residences treatzd separately
and then combined), room air conditicners contnibwted 30.7 GWh as compared. to central air conditioner 934.5
GWh in region 3, 29.9 GWh (reom air conditioner) as compared t0 134.1 GWh (ceutral air conditioner) in
region 2, and 42.5 GWh (room air conditioner) as compared to 266.7 GWh (central air conditioner) . “All
Other” regions,
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7.3.3 Findings

Tables 7-5 and 7-6 (tzken from Eto 1992) shows 1985-1389 AMP sample average annual
and average monthly UEC for room air conditioners for CEC regions and PG&E zones.
Room air conditioner UEC is generally less than half of the central air conditioner UEC,
for each of the areas compared. These tables also show the number of metered air
conditioners by CEC region and by PG&E zone, The AMP data base includes metered
data for 65 room air conditioners for some portion of the five year period 1985-1989.
The metered room air conditioners are concentrated in the coaoler geopraphic areas: for
the PG&E zone aggregations, 36 in zone X and 20 in zone S, and for the CEC region
agpregations, 39 in region 4, and 13 in region 3.

Table 7-7 summarizes the results of the stepwise-model (again using F-io-enter/F-{o-
delete 0.15). indicating which variables were included in the model and the model -
squared. Model r-squared for the seasonal models are in most cases lower than the r-
squared of the corresponding maodels for central air conditianer load: 0,72 for room air
conditioner model vs. (.84 for central air conditioner model for PG&E zone S summer,
(.85 for room air conditioner model vs. .91 for central air conditioner model for PG&E
zone X summer. and (.78 for room air conditioner model vs. the lower 0.74 for central
air conditioner for CEC region 4 summer. The poorer fits for room air conditioner may
be partially a result of the relatively smaller sample sizes.

The sets of explanatory variables included in the models for room air conditioner are
quite different than those included in the corresponding models for central air
conditioner. These differences in variables selected are not necessarily reflective of
behavioral differences; as discussed in Chapter 3, caution should be used in drawing
conclusions from subsets of variables selected by the stepwise procedure.

However, differences in the specification of the models developed from the central air
conditioner data and thuse developed from the roomn air conditioner data do not
necessarily indicate that a re-scaled central air conditioner model would not be
appropriate for modeling room air conditioner loads. To assess whether 1t would be
worthwhile to develop and use separate models for room air conditioner, the prediction
errors resulting from using a re-scaled central air conditioner models should be compared
to prediction errors from models developed from the room air conditioner data itself.**

¥ Units would be re-scaled lo reflect room air conditioner UEC mstead of central air conditioner UEC.
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7.3.4 Conclusion

We develeped regression moedels for daily rcom air conditicner load for PG&E zones S
and X and for CEC region 4 using the stepwise regression procedure. The resulting
models were scmewhat different than the corresponding models for central air
conditioner loads. We did not conducl analyses that would allow us tc conclude
definitively that these models are more appropriaie for forecasting room air conditioner
loads than is the use of 1e-scaled central air conditioner madels.
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Table 7-5. Annual UEC for Room Air Conditioning, GEC regicns

: : avarage
APPLIANCE 19856 1986 1987 1988 1989 {all
years)
all regions
mean 244 363 476G 668 477 47k&
wt.mean n/a n/a n/a n/a 514 n/a
n 41 40 5O 51 48 46
region 3
mean an £95 E7R 754 343 521
wt.mean n/a n/a n/a n/a 325 n/a
std.dev. 188 254 2672 307 208 281
n 10 9 8 10 10 9
region 4
mean 2986 228 433 502 393 373
wt.mean n/a n/a n/a n/a 381 n/a
std.dev, 134 120 474 181 151 275
g 103 98 108 105 120 107

Spurce; AMP measurements {1585-1585)
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Table 7-6. Annual UEC for Room Air Conditioning PG&E zones

-APPLIANCE 1985 1986 18987 1388 1989 avarage
) : R {all
years)
all regicns
mean 344 363 476 5aY:] 477 475
wit. mean n/a n/a n/a n/a 514 nia
n 11 40 50 51 48 46
zona 8
mean 485 517 €33 980 529 £80
wvwt. mean n{a n/a n/a n/a 651 n/a
std. dev. 201 253 250 325 249 -
n 12 11 14 18 17 14
zone X
mean 286 217 425 195 395 369
wt. mean n/a n/a n/a n/a 3682 n/a
std. dev. 130 120 487 186 149 -
n 23 23 3 27 26 28
Source: AMP measurerments {1985-1989)
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Table 7-7. Summary of Regression

Results for Daily Room Air Conditioner Load

Variable
- Name

Zone 5 - . -

) Spran :

. -Summer-

Fat|.~. .

. Zona.X

Spn’ﬁg .

Summer . - Fall

.. Region'4.

' Spring ...

: Summﬁr - Fail

AVGDRY
AVGDRY1
AVGORY 2
MXDRY
MXDRY1
MXDRYZ
MNDRY
MNDRY1
THISUM
THISUMI
THISUM2
MXTHI
MXTHIT
MXTHI2
HURMMXDRY
CDDSUM?75
- CODSUMTS. 1
CDDSUMTS. 2
CDDSUMEO
CODDSUMEOD.1
CDDSUMEOD.2
CDDSUMES
.CDDSUMBS. 1]
CDDSUMBE.2
CDDSUMS30
CDDSUMS0.1
CDOSUMS0.2
CDDSUMEE
CDDSUMSE.1
CDDSUMS5. 2
TVARMX
TVARAVG
TCHANGE
AVGDRYSC
SCE1
SCEZ

R {numbar covariates)

0.85{4]

0,72(5]

0.33{3}

0.79(5}

x

0.85(2| 0:3318) "

0.57{6Bl

0.78(3) 0.55(4}




7.4

7.4.1

7.4.2

Alternate Weather for Modeling CEC Region 4

We investigated the use of alternative weather data for modeling CEC region 4 daily
central air conditioner loads, as a possible means of importing model fit. We found that
the weather daia used in the onginal Weather Response Funclions reported in Chapter
3 (1985 Sunnyvale, 1986-1989 San Jose) resulled in the highest model r-squared of the
three sets of weather data tested.

Maotivation

Both the daily and hourly Weather Response Functions for central air conditioner loads
had considerably poorer fits for CEC region 4 than for CEC regicns 2 and 3. For
example, the summer season WRF for daily central air conditioner loads in region 4 has
an r-squared of 0.74 as opposed to 0.92 for the region 2 model and 0.29 for the region
3 model. The residences melered in that region have, on average, the lowest annual
central air conditioner TJEC among regions 2, 3, and 4 (849 kWh/year in region 4 as
compared to 1174 in region 2 and 163 in region 3; see Table 2-1).

Region 4 also has milder weather than region 2 and region 3, so this relatively poor fit
is not unexpected, both because of expectations aboul customer behavior and because the
characteristics of the statistical modeling techniques. In addition, region 4 may be more
climatically diverse than the other regions, so that the weather reported at any one
weather station may be less represeniative of the weather at the metared sites.

Approach

We used weather data recorded at other sites within region 4 to develop new daily
Weather Response Functions. The regression models developed in Chapters 3 and 4 for
region 4 were based using four years of weather data from the San Jose station (1986-
1689), and one year of data from the Sunnyvale station (1983) since San Jose weather
data was not available for that year. We re-ran the stepwise regression procedure with
twe alternative sets of weather data: data recorded at the NOAA Sunnyvale station for
all five years, and data recorded by PG&E at its San Ramon weather station. For
comparability, regression results are based on 1986-1989 data only for each of the three
stations, We used r-squared to compare the fits of the models. We also restricted the
number of first-crder explanatory variables to six, as required by HELM.



7.4.3 Findings

7.4.4

Table 7-8 shows, for each station, the season-specific r-squared for the linear regressions
resulting from the siepwise procedure. R-squared is the highest using San Jose weather
for both the summer and fall season. Using San Ramon weather data results in a
substannal loss of fit, except for the fall season (r-squared using San Ramon weather is
0.63 as opposed to 0.5% using San Jose weather and 0.53 using Sunnyvale weather).
Thus, of the three alternative sets of weather data considered for this region, data from
the San Jose station, which was used in developing the WRFs reported in Chapter 3,
provide the best fit.

Conclusion

Our preliminary 1nvestigation into the use of different weather stations indicates thal the
current practice of relying on San Jose weather remains the best choice for modeling
region 4 central air conditioning loads.

Table 7-8. Comparison of CEC region 4 Daily Central Air Conditioner Load
Regression Model Fits for Three Alternative Weather Stations

R-Squared for Seasbn_ed Madel

Weather Station Spring Summer Fall
San Jose NOAA 0.92 0.83 0.549
Srtation

Sunnyvale NOAA a.88 0.79 0.53
Station

San Ramon PG&E 0.67 0.55 0.63
Station

{all regressions are based on 1986-1388 data)

oG
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Alternative Definitions of Hourly Load Shape Bins

We examined the variability of loads within the bins previously defined by PG&E (which
were used in the analysis presented in Chapter 4) in order to pain insight into the
potential value of altemative bin definitions,

Motivation

The definitions for the bins of hourly load shapes developed in Chapter 4 were adopted
from previous work by PG&E. PG&E's definitions stemmed {rom in-house analysis of
only 1989 cooling load data. The number and definition of the bins for hourly load
shapes stems on the one hand from practical limitations of the HELM model and
available weather data, which restrict the total number of bins and the variables eligible
for use in defining them. Within these hmitations, the primary theoretical issue relates
lo the observed variability of loads within a bin. As mentioned in Chapter 4, ideaily,
bins are defined towards maximizing Lhe variability across bins, while minimizing the
variability within them. The questions we begin to address in this section are: 1) how
well the current binned load shapes represent the load shape for particular days within
the bin, and 2) the potential of alternative bin definitions to reduce the variability within
bins. The essence of the issue of describing load shape variability within a bin is: how
different is a single day’s load shape within a given bin likely to be from the load shape
used (o represent the bin? This difference can be descmbed in many ways; a good
parsimonious description should depend on which aspects of the load shape are most
important. From a forecasting viewpoint, two important load shape aspects are the
maximum hourly load in a day, and the coincident end-use load for the hour of system
peak load (4 p.m.).

Approach

We Nirst examined the variability of hourly loads within a bin, using the current bin
definitions which are specified using AVGDRY., We then explored whether alternative
bin definitions, either vsing AVGDRY or some other weather variable, could reduce the
variability within a load shape bin. We evaluated the capability of four different daily
weather measures (THISUM, MXDRY and CDDSUMBS0) (o group days using the
following procedure: (1) define a univariate description of the load shape; (2) select a
weather variable to use in bin definitions; (3) use regression trec analysis with the
selected weather variable and load shape variable to determine bin cut-points; and (4)
graphically examine the variability of the load shape defined within each bin.
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7.5.3 Thindings

Figure 7-3 shows the varability in hourly load percentages for each bin for CEC region
3 for each of the six weekday bins (six plots, each with 24 boxes showing hourly load
distributions).” The distribution of percentage load for each hour is illustrated by a box;
the white bar in the box indicales the median of the distribution, the lower and upper
ends of each box represents the first and third quartile of the distribution; the range of
the data is indicated by horizontal bars below and above the box; values a factor of more
than 1.5 times the interquartile range from the nearest quartile are indicated by detached
lines.

The range of 7 p.m. load (typically the peak hour for cooling) for CEC region 3 for
weekdays in the hottest bin is between 0.083 and 0.124, with an interquartile range of
0.095 10 0.108 (57 days). For the next warmest bin, the distribution of 7 p.m. load is
slightly “tighter” and somewhat higher, wilh range belween 0.092 and 0.128, and
interquartile range of 0.106 to 0.117, In general hourly distributions become
increasingly dispersed with decreasing temperature. For all bins, the maximum median
of the hourly distributions occurs at 7 p.m.

Table 7-9 shows the distribution of the hour in which the maximum load occurred for
region 3 summer days, by day-type (weekday vs. weekend), and weather (all days, days
with THISUM greater than 100, days with THISUM greater than 200, and THISUM
greater than 250). The table shows that the distribulion of peak hours is different
between weekdays and weekends, but does not change much with increasing THISUM.
The weekday peak 1s lypically at 7 p.m. (56.6 percenl of all summer days), but is also
often at 6 p.m. (27.2 percent of all summer days), with a somewhat higher percentage
of 7 p.m. peaks on hotter weekdays’®. Six p.m. peaks are more frequent on weekends,
accounting for 41.4 percent of the peak hours over all weekend days, as compared to
36.8 percent for 7 p.m. This difference in weekday and weekend profiles supports the
currenl practice of developing separating weekdays and weekends in denving load shape
libraries (although results may be different for other CEC regions or PG&E zones).

Using maximum hourly load as a univariate description of load shape, we examined the
use of four weather variables for their capability to separate load shapes. Current PG&E

7 Sinee the hours of the day are considared independently, this depiction does not describe all aspects of
load shape vanability.

*# Recall thal in the convention used by PG&E, loads are recorded al the end of the peniod during which
they occurred (so that the 7 p.m. load, which is computed by averaging the :30 and 7:00 p.m. hatf-hourly

loads) 15 the load betwaen 6 p.m. and 7 pom.
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7.5.4

bins are defined separately by day type {weekday vs. weekend). As previously noted,
this practice seems well-justified, so we examined weekday and weekend load shapes
separately as well.

We used a technique called regression tree analysis Lo suggest cul-points lo use for
binning {Chambers and Hastie 1992). This technigue models data by using binary
recursive partitioning according to the values of covariates such that at each node the data
are split so that the response variable (here percentage load in maximum hour) are
maximally distinguished between the two branches of the split. We buill trees for each
of four weather variables: daily average dry bulb (emperature (BRYTMP in Table 3-1),
the sum over 24 hours of THIB (see Table 5-1), CDDSMB0 (see Table 3-1), and
maximum hourly dry bulb temperature (MXDRY in Table 3-1) and used the lrees 1o
suggest cut-poinls by which the load data could be binned.

We first examined the bins defined by partitioning on the basis of DRYTMP, Figure 7-4
shows the distribution of maximum hourly load for each of seven bins which together
divide the observed range of DRYTMP, using summer weekday data for CEC region
3. For comparison, Figure 7-4 also shows the distribution of maximum hourly load for
PG&E's exisiing bin definitions for surnmer weekday in CEC region 3. Ideally, the
distribution for each bin will be narrow, with relatively little overlap with adjoining bins.
The existing PG&E bins definitions seem to accomplish this distinction as well as the
bins suggested by regression tree analysis; this 15 particularly notable since the new bin
definitions were construcied on the basis of maximum hourly load, whereas the PG&E
bin definitions were not.

Figure 7-5 shows the distribution of maximum hourly load for bins defined on the basis
of the three other weather variables examined: MXDRY, THISUMGSE, and CDDSME0,
Surpnsingly, the bins defined on the basis of MXDRY are the poorest among the weather
variables examined, The bins defined on the basis of THISUM68 work quite well, bul
are not convincingly better than the existing PG&E bin definitions.

Conclusions

L.oad shapes show a fair amount of variability within bins using the existing PG&E bin
definitions. However, of the three alternative weather variables we used to define lgad
shape bins, none was able to distinguish load shapes significantly better than DRYTMP
does for the existing bin definitions. The variable THISUMG®68 showed the most promse
for improving bin definiticns.
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Table 7-9. Distribution of Hour of Day in Which Maximum Load Occurred for
Regicn 3 Summer AMP Sample Average Load Shapes. by Day Type and

THISUM-68 (3" max(THI [h]-68,0))
=]

weekday

Percent of Days by THISUM-688 Category

All days THISUM-B88100 THISUM-68)200 THISUM-68)250
4 p.m. or earlier 4.6 0.0 0.0 0.0
5 p.m. 4.2 3.4 3.2 0.0
& p.m. 27.2 28.5 23.0 39.1
7 p.m. 56.6 £7.0 70.6 60.9
8 p.m. 6.3 4,0 3.2 0.0
3 p.m. or later 1.2 D.0 0.0 D.0
number of days 523 321 187 23

weekend
Percent of Days by THISUM-B8 Category

All days THISUM-B8;100 THISUM-683200 THISUM-68;250
4 p.m. or earligr 9.2 0.0 0.0 0.0
5pm. 4.6 3.9 6.9 0.0
6 p.m, 41.4 47 .1 41.4 50.0
7 p.m. 36.8 431 44.8 50.0
83 p.m. 8.0 5.9 6.9 0.0
9 p.m. or later 0.0 0.0 0.0 0.0
number of days B7 51 29 2
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7.6

7.6.1

7.6.2

7.6.3

Separate Modeling of Peak Days

We made an initial assessment of the potential benefits of modeling peak days separately
from other days, using summer data for CEC region 3. This assessment is closely
related to the analysis of heat storim effects (Section 7.1} and one of our
recommendations for future tesearch (Chapter 8).

Motivation

Modeling peak day loads i1s of primary importance in developing load forecasts. Peak
days may be different than average days both because they have extreme values, and
(itom a differant perspective) because response to weather on the hottest days may not
necessarily be related to weather on cooler days in a straightforward or identifiable
manner, [n our model assessment phase {Chapter 6), we made separate assessments of
performance for the Peak Day Subset of the various models considered in this report, and
compared this performance to model performance for all summer days. This comparison
indicated that the distribution of residuals for peak days may be considerable different
ihan those for typical summer days.

In the linear regression models we developed, as well as in models used in the past by
PG&E and CEC, peak days and average days are combined. As an alternative, it may
be useful to consider modeling peak days separaltely from average days.

Approach

We re-estimated the hourly weather response function Model 3 (see Chapter 3) for each
of the 24 hours of the day, using region 3 data for days in the Peak Day Subset, and
compared ils performance to that of the hourly models developed in Chapter 3 from dala
for the entire summer season in region 3.

Findings

Table 7-10 shows a comparison of the results from some of these hourly models (thc 4
p.m.; 5 p.m., 6 p.m., and 7 p.m. models) to the corresponding results of the CEC
region 3 summer LBLHWRF (I.BL's hourtly regression models) for the Peak Day Subset.
The table shows the Prediction Error within the Peak Day Subset for these models.
While this Predietion Error (P.E.) is expected to be lower tor the Peak Day Subset
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7.6.4

models, the difference is appreciable, e.g. the hourly 4 p.m. model developed from all
summer days vields a P.E. of 5.3, as compared to a P.E. of 3.6 for the hourly 4 p.m.
model developed from the Peak Day Subset alone,

Conclusions
These results, although not conclusive, suggest that the difference between peak days and

average days may warrant separate treatment in the forecasting process.

Table 7-10. Comparison of Prediction Errors in Selected Hours for Model 3
Based on Peak Day Subsat to model 3 Based on All Summer Days, far CEC
Region 3

Prediction Error Aimong Paeak Day

Subset’
Hour of Day )
16 17 18 18 ‘

Regression Model:

Load =FfTHIB, THIBSO, THIBSUMSE, error/

Hourly models based on all Summer days® 5.3 .3 5.4 5.5
Hourly madels based on peak day subset 3.6 3.4 2.5 2.4

(r-squared) (Q.80) {0.61) (0.64] 10.59)

1 Paak Day Subset is =days with SD=highest=values of Dailv Erergy:Annual Energy, 1985-1983,
based an PG&E system load data provided by CEC
see Table 5-4 for summarcy aof regressicn resulhs loc these models
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8.1

Chapter 8
e T

Directions for Future Research

Throughout the analyses undertaken in this project, issues have been 1dentified as
candidates for future resecarch. For those that could be readily addressed, albeit in a
preliminary fashion, exploratory analyses were conducted and results were reported in
Chapter 7. In this chapter, we suminarize two particularly imporiant issues remaining
from Chapter 7: (1) respecification of binned load shapes (straightforward); and (2)
issucs underlying the heat storm and peak day analysis (complicated). We also identify
two additional, more general issues for future research: (3) representativeness of the
AMP sample with respect to the population; (4) potential differences between weather
conditions recorded during the sampling period and those used in the forecasting process

Before describing these issues, it is important to preface our comments with a general
statement regarding their relative importance. That is, we believe to be that the
availability of metered end-use data to support model development represents a
tremendous improvement over previous analyses. One should, therefore, view the issues
raised as ones which we now have the luxury to address, Thal is, prior to the
availability of these data, the significance of these 1ssues was maoot since there was no
possibility of resolution.

In establishing priorities for these activities, we believe strongly that the need for
additional research must be predicated on a systematic assessment of competing load
shape forecasting objectives (such as forecasting system peak, hourly load shapes for 12
typical weeks, minimum load conditions, etc.) in light of the resource constraints faced
by the forecasting process.

Respecification of Binned Load Shapes

In Chapter 6 we concluded that the LBL daily Weather Response Functions and binned
load shapes generally performed better than did the LBL hourly Weather Response
Functions and significantly better than did the other approaches. In Chapter 7, we
developed a framework for considering alternative bin definitions for the daily approach.
Within this framework we explored the use of a single measure of load shape, maximum
peak demand, as a means for creating new bin definitions.

In view of the performance of L.BL daily Weather Response Functions, we bhelieve
additional work 1o consider alternative approaches for defining bins is warranted.
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3.2

8.3

Peak Demand versus Load Shape Forecasting

In several parts of the report, we took up the 1ssue of peak demand forecasting, as
distinct from load shape forecasting. In Chapter 6, we evaluated the performance ot our
models separately for system peak load days and found that, generzlly speaking, our
models underpredicted loads on these days. In Chapter 7, we evaluated the inclusion of
heat storms into the daily energy models and the development of separate models to
forecast peak load days. We believe that ultimate resolution of these issues requires
directly addressing the tension inherent in forecasting peak demands, afler first
constraining load shape models with separately-derived annual energy forecasts.

The annual forecasts of energy use that are input into the load shape models represent
a constraint on the load shape forecast. For forecasting average load shapes, this
constraint is quite reasonable. For forecasting system peak demands, the continuing
appropriateness of this constraint should be examined. For example, given a fixed annual
energy forecast, allocation of additional energy Lo peak demand days (either by inclusion
of a heat storm effect or separate modeling of peak days) results in less energy being
available for allocation to average demand days.

As indicated in the introduction to this section, however, we believe it is appropriate to
start this process by first re-visiting the objectives of load shape forecasts in larger
context of resource planning to determine the relative importance of {(A) system peak
demand forecasts, (B) average load shape forecasts, and (C) other issues, such as
forecasts of minimum load conditions. Only after the importance of the system peak
demand forecast, relative to other applications of the lpad shape model, is established
will it be appropriate to consider further model enhancements to address peak demand
issues.

Sample Weight Development

Upon direction from project sponsors, all project analyses have been based on un-
weighted aggregations of the AMP sample data. There remain un-answered questions as
to the tepresentativeness of the sample with respect to the PG&E population, as
represented in the CEC forecasting framework.

We believe that having completed an analysis of the un-weighted data, it 1s appropniate
to examine the potential additional value of including sample weights in subsequent
analyses. Specifically, we recommend examining existing sample weights and, if
appropriate, developing new sample weights for forecasting purposes. It is likely that
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separate sets of sample weights would be required for use by PG&E and CEC, in view
of differences in their forecasting applications.

Weather Daia for Forecasting

The weather observed in the metering peried is likely to be different from that used in
the forecasting process. Several specific issues arise as a result: (A) how similar (or
different) is the weather data used in forecasting from that observed in the metered data;
(B) to the extent there are differences, what is their significance for the forecasts.

A separate and more general issue is (C) how should weather data developed for
forecasting. This issue, in turn, s also related to previously discussed issue (Section 8.2)
regarding the relative importance of various load-shape forecasting objectives for system
rescurce planning.
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Appendix A
T R

Data Handling Conventions

Prior lo our analysis, we developed a number of conventions for handling data. These
included the assignment of individual househelds o the CEC and PG&E geographic
regions or zones used in our analysis, the aggregation of half-hourly loads to hours and
the alignment of these loads with the weather data, and definition of day types and
treatment of missing values,”

Geographic Coding

We used two distinct sets of geographic aggregations: a set of five climate regions used
by CEC, and a set of four climate zones used by PG&E. Table A-1 shows the number
of central and room air conditioners metered for each geographic aggregation, Several
regions do not have significant numbers of metered data (e.g., in the case of central and
room air conditioning, CEC region | and 5, and PG&E zone T); correspondingly we
used only three of CEC's chimate regions (regions 2, 3, and 4) and three of PG&E's
climate zones {zones R, S, and X). We refer to these geographic aggregations as CEC
regions and PG&E zones, respectively. Maps of the geographic aggregations are
included in Chapter 2.

To make CEC region assignments, we used the zip code of the residence (which PG&E
provided to LBL in the file [LBL.ID.DAT) and then selected a CEC region according to
the zip code/climate region correspondence given to us by CEC in the file ZIPzone. DAT.,
We reviewed these initial assignmenlts by comparing the county of each zip code as given
in ZIPzone. DAT to the county as given by U.S. census and postal information (0
determine cases for which there was a discrepancy 11 county coding. Based on z1p code
location and our inspection of the CEC map of geographic climate zones, reassigned
residences in 4] zip codes.

Each residence was also assizned to one of four PG&E zones, R, 5, T, or X with
corresponding PG&E weather sianans Fresno, Sacramento, Salinas, and San Ramon.
These assignments were made according to the LELID-zone assignments provided by
PG&E in the file CLIMzone. 1.BL.

* LBL reviewed some of AMP data for an earlier project (see Eto and hMoerz 1992)
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A.2 Weather Data

We used two sets of weather data in this study, one set derived from NOAA weather
data, and a second set of data from PG&E wealher stations. Each CEC region is
associated with a NOAA weaiher station. Each PG&E zone is associated wilh a PG&E
weather station. See Table 3-1.

CEC provided LBL with a weather data set derived from NOAA weather files. This data
set consists of hourly measurements for 1985-1989 for each of several weather variables
at six weather stations; Blue Canyon, Fresno, San Jose, San Francisco, Sacramento, and
Sunnyvale. The weather vanables reported in this data set are: wel-bulb temperature,
dry-bulb temperature, dew point temperature, relative humidity, wind speed, and cloud
cover {not all of which were used in our analyses), Other meteorological measurements
are reported in the NOAA weather files but were not used in our analyses. According
to NOAA documentation, hourly weather data are observed within ten minutes to the
hour for which the data are reported. The Blue Canyon weather station is assigned to
CEC region 1, the Sacramento weather station is assigned to CEC region, the Fresno
weather station is assigned to CEC region 3, Lhe San Jose (1986-1989) and Sunnyvale
{1985) weather stations are assigned to CEC region 4, and the San Francisco Airport
weather station is assigned to CEC region 5 (but CEC regions 1 and 5 were not analyzed
in this study).

Each of the annual PG&E weather data sets we received for 1985-1985 contains half-
hourly measurements of dry-bulb temperature and relative humidity for 25 weather
stations.  In this report we use data from only three of these stations, Fresno,
Sacramento, and San Ramon. We considered daily average temperature missing if fewer
than 24 of the 48 possible half-hourly temperatures were reported for that day.

For each station-hour of the NOAA data, we computed an index of climatic severity
called the temperature-humidity index (THI). This index was used in devcloping the

time-temperature matrices and in the allocation of annual to peak day energy use. The
definition we used to compute THI is:

THI = 0.4 = (dry-bulb temperature + et -bulb temperature) + 15,

with dry-bulb and wel-bulb temperatures given in degrees Fahrenheit. For some of our
analyses we also used THI degres-days, or THI-DD, as it is used in CEC's Pesak
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A3

A4

Demand Forecasting Model to allocate annual demand to peak day demand. We
computed THI-DD with a base temperature of 68 degrees:

e

THI-DD [day k] = Y max {THI [hour i, day k]-68,0}
=l

THI-DD serves as a measure of those hours that contribute to cooling loads (CEC defines
these as hours with THI temperatures in excess of 68° Fahrenheit).

PG&E End-Use Load Data

Load data for 1985 and 198¢ were obtained from PG&E in 1989 as SAS data sets
AMPLBL1 and AMPLBL2. These data sets contained half-hourly loads for both
conditioning and non-conditioning appliances and for total household. Cooling load data
for 1987, 1988, and 1989 were received from PG&E in the SAS data sets CECRES87,
CECRESSBS, and LBLRESE9. Data for 1987, 1988, and 1989 were reported on an
hourly basis. Each data set contained data for total household load in addition to loads
for specific appliances.

PG&F reports load data at the end of the measurement interval. For example, in the
1987, 1983, and 1989 hourly data provided by PG&E, the 1 a.m. hourly load is the load
between 12 midnight and 1 a.m.. We used this convention to compute hourly average
loads from the 1985 and 1986 half-hourly load data. For consistency with PG&E's
reporting procedure, we defined the hourly load for a given hour as the average of the
loads reported for the two preceding half-hours. For example, load demand for ] a.m.
was computed as the average of the 12:30 a.m. and 1 a.m. loads. If data for only one
of the two half-hours was available, we estimated the corresponding hourly demand using
only the demand for the half-hour.

Time Conventions

The NOAA weather data are always reported in Local Standard Time whereas the PG&E
weather and load data are recorded using Daylight Savings Time. We converted the
NOAA data to Daylight Savings Time for our computations.

For this report Weekend is defined as Saturday, Sunday. or one of the eight holidays

listed on the PG&E rate schedule: New Year’s Day. President's Dav, Memorial Day,
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Independence Day, Labor Day, Vateran’s Day, Thanksgiving Day, and Christmas Day.
A Weekday is any other day,



Table A-1. Number of Central and Room Air Conditioners Metered by CEC
Region and PG&E Zone

End Uses Analyzed in this Study

Central Air Canditioner (all ragions)- - 415
CEC Region1 ... ...... 3
CECRegion2 ......... 65
CEC Region3 ......... 186
CEC Region 4 ,........ 133
CEC Region ......... &
PGRE zone R ... ..... .. 149
PG&EzoneS ... . ... .., 157
PGRE zana T .. ... .. .. 1
PG&E zone X ... ....... 107

Room Air Conditioner (all 65
regions}
CECBRegion1 ......... 2 I
CECRegion2 .., . ...... 5]
CEC Region3 ... ...... 13
CEC Region 4 ......... ag
CEC Regionb . ........ 2
PG&E zoneR ... ....... 9
PGRE zone S . ... ...... 20
PG&E zone T* .. ... .... O
PG&E zpone X .. . . ... ... 36
* PG&E zone T is not analyzed in this study
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Table A-2. Comparison of Geographic Assignments Between PG&E Zones
and CEC Regions

FG&E Zone

CEC R 3 T X TOTAL

Region

1 6 15 19 0 40

2 1 83 O 1 85

3 150 94 O 1 245

4 0 43 23 225 292

5 1 G 40 39 8O

6 a B 0 0 B

7 25 g O 0 25

183 243 82 267 775

1 all AMP LBLIDs are included in this cross talulation, not just those fer whish cooing end uses were
rmetered.
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Figure B-1. Central Air Canditioner Load Profiles by Bin for PG&E Zone R.
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Figure 3. Central Air Conditioner Load Profiles by Bin for PG&E Zone R.
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Figure 3-7. Central Air Conditioner Load Profiles by Bin for PG&E Zone X.
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Figure B -8. Central Air Conditicner Load Profiles by Bin for PG&E Zone X.
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Figure -9, Central Air Conditioner Load Profiles by Bin for PG&E Zone X.
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Figure 8-10. Central Air Conditioner Load Profiles by Bin for CEC Region 2.
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Figure 8-11. Central Air Conditioner Load Profiles by Bin for CEC Region 2.
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Figure B-12. Central Air Conditioner Load Profiles by Bin for CEC Region 2.
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Figure =-13. Central Air Conditioner Load Profiles by Bin for CEC Region 3.
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Figuret -14. Central Air Conditioner Load Profiles by Bin for CEC Region 3.
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Figure B-15. Central Air Conditioner Load Profiles by Bin for CEC Region 3.
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Figure r-16. Central Air Conditioner Load Profiles by Bin for CEC Region 4.
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Figure B-17. Central Air Conditioner L.oad Profiles by Bin for CEC Region 4.
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Figure B-18. Central Air Conditioner Load Profiles by Bin for CEC Region 4.
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Figure C-1. Distribution of season-specific model residuals (obs. - pred.) for CEC Region 2.
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edix D

HELM Model Implementation
of Project Results

This appendix documents the HELM input files provided as products of the current
project, and summarizes an important issue in using HELM

We prepared HELM input files for the “final” versions of the models described in
Chapters 3 and 4, which combine daily energy forecasts with bin-specific 24-hour load
shapes. We developed six sets of inputs, one for each of the three CEC regions studied
(CEC regions 2, 3, and 4), and one for each of the three PG&E zones studied (PGAE
zones R, S, and X). The input hles developed for each of these geographic areas consist
of one Daily WRF files and one Load Shape Representation file. The Daily WRE files
contain the final daily energy regression models reported in Chapter 3 (Tables 3-3 and
3-4). The Load Shape Representation files contain load shape libraries, which are sets
of 24-hour load shapes corresponding to the temperature, season, and day-type bins
specified in Table 4-1 (for PG&E zones) and Table 4-2 (for CEC regions). Model
specifications are completed by day type and season definitions {(which are defined in this
report and in our calendar files), and definitions of the variables used in the models
(which are defined in Table 3-2).

We have already discussed two issues relevant to the use of project results within HELM,
including the format and number of variables that can be used to specify WRFs, and the
ease of using the WRFs, both described in Chapter 3. In this appendix, we discuss the
reasonableness of HELLM maodel forecasts developed using project results, in the context
of current PG&E and CEC forecasting procedures. Specifically, we comment on the
issue of negative load forecasts resulting from use of LBL's WRF and the weather files
currently used by PG&E and CEC in forecasling.

¥ Begause the production version of HELM 2.0 was not availabls when we began developiiig and testing
input [iles, we used the bela release of HELM 2.0,
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D.1 Background

The nature of linear regression, which is the tasis for the HELM WRFs, means that their
use may produce negative values for loads. The oceurrence of such loads depends on the
forecast weather data used in the HELM. Both CEC and PG&E have reported obtaining
negative loads while using preliminary LBL WRFs along with their respective “typical
weather” files, and it is likely that any “reasonable” typical weather data for the areas
studied would likewise result in a few (but not many) negative loads.

The occurrence of such negative load forecasts 1s statistically acceplable in tlie context
of forecasting. However, because negative loads are theoreiically impossible, they may
be awkward to use: the occurrence of such as a prediction can be conceptually
discemforting and could conceivably result in computer-related difficultiss in the post-
processing of model output.

D.2 Approach and Findings

CEC and PG&E requested that we investigate the occurrence of negative loads in order
to develop recomuendations on how they might best be dealt with, We obtained the
“lypical weather” files used by CEC?! and PG&E™ in their ER-94 HELM forecasts runs.
We penerated HELM model predictions using these typical weather files {(as both the
forecast and the base weather file} and examined the occurrence of negative loads. Note
that the hourly loads for a day are zero if and only if the daily load 1s zerg, since
application of the binned load shape implies multiplication of the daily energy load shape
by a positive scale.

We examined the occurrence of negative loads for each CEC region and PG&E zone,
determining for each the number of negative loads, the total (negative) energy these loads
represent, and the percentage this total (of negative loads) is of the forecast annual
energy. Negative loads account for 1.3, 0.1, and 1.1 percenr ¢f annual energy for CEC
regions 2, 3, and 4 respectively; days with riegative loads account for 6.3, 2.5, and 4.1
percent of the 365 days for these regions, respectively. Of the three PG&E zones R,
§,and X, only the forecast for zone R included any negative load forecasts. Negative

3 These are the files PGES2, WTR in the RES subdirectorizs of geographic area directories (SACTO,
FESN, and SANJGSE for CEC ragions 2, 3, and 4 respectively), which wers transmitted with a memoerzndom
dated Apgust 31, 1593,

% These are the fles CZRRES.DAT, CZSRES DAT, and UZXRES.DAT (for PG&E zones R, §, and X
respectively) received in September 1993,



D.3

load forecasts for zone R accounted for 2.4 percenr of annual forecast energy, and
occurred on 1.4 percent of the 365 days.

Discussion

Options for treating negative loads, apart from ignoring them, include: (1) replacing
negative loads by zero; (2) modifying the WRFs; and (3) defining new bins.

Option 1, replacing negative loads by zero, will result in an overestimate (relative to the
model as originally specified) of total energy for the forecast period. That is, if forecast
weather and base weather are the same, the total forecast load (if negatives are
interpreted as zeros) will be higher than the energy specified in the forecast. The
overestimate would be small (equal to the sum as negative loads as a percent of annual
energy), but can probably not be considered negligible: 1in our case, for CEC regions
2 and 4 and PG&E zone R the total of negative loads is more than one percent of total
annual load, as shown above (1.3 percent, 1.1 percent, and 2.4 percent, respectively.
Further, resetting negative loads to zero may be computationally awkward, since it
requires post-processing of the HELM output.

Option 2, modifying the WRFs, has been used both by CEC and PG&E. Itis in general
not mathematically straightforward to calculate minimal adjustments to eliminate negative
loads, since each WRF uses a variety of weather-based variables which are not a function
of AVGDRY used to define the bins. Furthermore, adjustments necessary depend also
on the particular weather used, Trial and error may be the easiest method of making
these adjustments. Such ad hoc adjustments can result 1n substantial changes in HELM
forecasted loads, although they will not necessarily do so. For example, to get rid of
negative loads in our CEC region 2 forecasts, we adjusted the TCHANGE coefficients
(which were negative values) for the Spring and Summer region 2 WRFs. While we
tried to make these adjustments as small as possible, the adjustments resulted in a
substantial change in peak load, reduced the predicted peak load by 3.5 percent. In our
test case for each region, we noticed that the negative loads occurred only in late Spring
and early Summer.

Option 3, defining new bins, 1s again not a straightforward calculation either. The
necessary adjustments may again be most easily achieved by trial and error.  Option 3
is perhaps the most acceptable of the options sketched here (excluding “do nothing™),
since peak predicted load would not be affected by such an adjustment.  There are
apparently (at least) two ways to make the adjustment: (1) shifting the lower bound of
the lowest load shape bin slightly higher, or (2) possibly using a secondary variable (in
addition to AVGDRY) to define an additional set of bins for each season and region.
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D4

Recommendation

In view of the small amount of energy affected and the necessarily somewhat ad hoc
approaches required to nmplement the alternative, we recommend that negative loads be
retained, as predicted. In the context of the overall system load shape, the effect of these
negative leads will be negligible. Accepting negative loads will also preserve the
consistency between the annual energy and load shape forecasts.
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