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Abstract: Optimal microgrid design is a challenging problem, especially for multi-energy microgrids with 7 

electricity, heating, and cooling loads as well as sources, and multiple energy carriers. To address this 8 

problem, this paper presents an optimization model formulated as a mixed-integer linear program, 9 

which determines the optimal technology portfolio, the optimal technology placement, and the 10 

associated optimal dispatch, in a microgrid with multiple energy types. The developed model uses a 11 

multi-node modeling approach (as opposed to an aggregate single-node approach) that includes 12 

electrical power flow and heat flow equations, and hence, offers the ability to perform optimal siting 13 

considering physical and operational constraints of electrical and heating/cooling networks. The new 14 

model is founded on the existing optimization model DER-CAM, a state-of-the-art decision support tool 15 

for microgrid planning and design. The results of a case study that compares single-node vs. multi-node 16 

optimal design for an example microgrid show the importance of multi-node modeling. It has been 17 

shown that single-node approaches are not only incapable of optimal DER placement, but may also 18 

result in sub-optimal DER portfolio, as well as underestimation of investment costs.  19 

Keywords 20 

Multi-energy microgrid design, power flow, electrical network, heating and cooling network, mixed-21 

integer linear program 22 

1 Nomenclature 23 

Decision variables and parameters are denoted with italic and non-italic fonts, respectively. 24 

Binary/integer variables are denoted with all-small letters. Vectors and matrices are denoted with bold 25 

small case letters and bold capital case letters, respectively.  26 

1.1 Sets and Indices 27 

t  time (1, … ,12 × 3 × 24): 12 months, 3 day-types per month, and 24 hours per day-type 28 

m  month (1, … , 12) 29 

u  energy use: electricity (EL), cooling (CL), heating (HT) 30 

c  generation technologies whose capacities are modeled with continuous variables 31 

(referred to as continuous generation technologies in this paper): photovoltaic (PV), 32 

solar thermal (ST), electric chiller (EC), boiler (BL), absorption chiller (AC) 33 
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g  generation technologies whose capacities are modeled with discrete variables (referred 34 

to as discrete generation technologies in this paper): internal combustion engine (ICE), 35 

micro-turbine (MT), fuel cell (FC) 36 

s  storage technologies: electric storage (ES), heat storage (HS), cold storage (CS) 37 

j  all generation technologies (g ∪ c) 38 

k  generation and storage technologies whose capacities are modeled with continuous 39 

variables (referred to as continuous technologies in this paper) (c ∪ s) 40 

i  all generation and storage technologies (g ∪ c ∪ s) 41 

p  period of day (for tariff): on-peak, mid-peak, and off-peak 42 

n, n′  electrical/thermal nodes (1,2, … , N): n and n′ are aliases 43 

1.2 Electrical and Thermal Network Parameters 44 

N  number of nodes (electrical/thermal) 45 

rn,n′ , xn,n′ resistance/inductance of the line connecting node n to n′, i.e. line (n, n′), pu 46 

Yrn,n′ , Yin,n′   real/imaginary term of Ybus for line (n, n′), pu 47 

Zrn,n′ , Zin,n′ real/imaginary term of Zbus for line (n, n′), pu 48 

Sb  base apparent power, kVA 49 

V0  slack bus voltage, pu 50 

V, V minimum/maximum acceptable voltage magnitude, pu 51 

θ, θ  minimum/maximum expected voltage angle, rad 52 

Nv  number of segments for linearization of current magnitude squared  53 

Irn,n′ , Iin,n′ maximum expected value of the real/imaginary current of line (n, n′), pu 54 

In,n′ current carrying capacity (ampacity) of line (n, n′), pu 55 

Sn,n′ power carrying capacity of line (n, n′), pu 56 

ϕ generation/load power factor 57 

γn,n′ heat loss coefficient for heat transfer pipe (n, n′), %/m 58 

HtTrn,n′ heat transfer capacity for pipe (n, n′), kW 59 

1.3 Market and Tariff Data 60 

grd  binary parameter for the existence of a grid connection 61 

CurPrn,u  load curtailment cost for energy use u at node n, $/kWh 62 

CTax  tax on carbon emissions (onsite and offsite), $/kg 63 

DmnRtm,p  power demand charge for month m and period p, $/kW 64 

ExpRtt  energy rate for electricity export, $/kWh 65 

PurRtt  energy rate for electricity purchase, $/kWh 66 

UtExp  maximum allowable electricity export to the grid, kW 67 

1.4 Technology Data for Investment 68 

Anni  annuity rate for technology i 69 

CFixk  fixed capital cost of continuous technology k, $ 70 

CVark  variable capital cost of continuous technology k, $/kW 71 

DERP̅̅ ̅̅ ̅̅
g̅  power rating of discrete generation technology g, kW 72 
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DERCapg  turnkey capital cost of discrete generation technology g, $/kW 73 

1.5 Technology Data for Operation 74 

COPa, COPe  absorption/electric chiller coefficient of performance 75 

DERMFxi  fixed annual operation and maintenance cost of technology i, $/kW-capacity 76 

DERMVri  variable annual operation and maintenance cost of technology i, $/kWh 77 

DERGnCstj  generation cost of technology j, $/kWh 78 

SolEffc,t  solar radiation conversion efficiency of generation technology c ∈ {PV, ST} 79 

ScPkEffc  theoretical peak solar conversion efficiency of generation technology c ∈ {PV, ST} 80 

SCEffs, SDEffs  charging/discharging efficiency of storage technology s 81 

SCRt̅̅ ̅̅ ̅̅
s, SDRt̅̅ ̅̅ ̅̅ ̅

s  max charge/discharge rate of storage technology s, kW 82 

SOCs, SOCs  min/max state of charge for storage technology s, % 83 

φs  losses due to self-discharge in storage technology s, % 84 

αj  useful heat recovery from a unit of electricity generated by technology j, kW/kW 85 

ηj  electrical efficiency of generation technology j 86 

MkCRtt  marginal carbon emissions from marketplace generation, kg/kWh 87 

GCRtj  carbon emissions rate from generation technology j, kg/kWh 88 

1.6 Site and Location Parameters 89 

Solart  average fraction of maximum solar insolation received during time t, % 90 

Ldn,u,t  customer load for end-use u at node n, kW 91 

1.7 Decision/State Variables for Investment 92 

𝑝𝑢𝑟n,k  binary purchase decision for continuous technology k at node n 93 

𝐶𝑎𝑝n,k   installed capacity of continuous technology k at node n, kW or kWh 94 

𝑖𝑛𝑣n,g  integer units of discrete generation technology g at node n 95 

1.8 Decision/State Variables for Operation 96 

𝑝𝑠𝑏n,t  binary electricity purchase/sell decision at node n 97 

𝑈𝑡𝐸𝑥𝑝n,t  electricity exported to the utility at node n, kW 98 

𝑈𝑡𝑃𝑢𝑟n,t  electricity purchased from the utility at node n, kW 99 

𝑀𝑎𝑥𝑃𝑢𝑟n,m,p  maximum electricity purchased from the utility during period p of month m, kW 100 

𝑆𝑂𝐶n,s,t  state of charge for storage technology s at node n, % 101 

𝑆𝐼𝑛n,s,t  energy input to storage technology s at node n, kWh 102 

𝑆𝑂𝑢𝑡n,s,t  energy output from storage technology s at node n, kWh 103 

𝐿𝑑𝐶𝑢𝑟n,u,t  customer load not met in energy use u at node n, kW 104 

𝐺𝑒𝑛n,j,u,t  output of technology j to meet energy use u at node n, kW 105 

𝐻𝑡𝑇𝑟n,n′,t  heat flow from node n to n′, kW 106 

𝑉𝑟n,t, 𝑉𝑖n,t real/imaginary voltage at node n, pu 107 

𝑃𝑔n,t, 𝑄𝑔n,t injected active/reactive power at node n, pu 108 

𝑆𝑔n,t injected apparent power at node n, pu 109 

𝑃𝑙𝑜𝑠𝑠t, 𝑄𝑙𝑜𝑠𝑠t  network active/reactive power loss at time t, pu 110 

𝑆n,n′,t  apparent power of line (n, n′), pu 111 
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𝐼𝑟n,n′,t, 𝐼𝑖n,n′,t  real/imaginary current of line (n, n′), pu 112 

𝐼𝑟𝑆𝑞n,n′,t linear approximation of |𝐼𝑟n,n′,t|
2

, pu2 113 

𝐼𝑖𝑆𝑞n,n′,t linear approximation of |𝐼𝑖n,n′,t|
2

, pu2  114 

2 Introduction 115 

The attention towards microgrids is constantly increasing with a fast pace, as a result of their benefits in 116 

terms of renewable integration, low carbon footprint, reliability and resiliency, power quality, and 117 

economics. Global environmental concerns are pushing forward and providing incentives for the 118 

deployment of renewable energy technologies, e.g. photovoltaics (PV) and wind. Most developed 119 

countries have set their renewable penetration goals. As a consequence, renewable energy technologies 120 

are rapidly advancing towards lower costs and higher efficiencies, making their deployments even more 121 

compelling. Also, resiliency concerns in the face of natural disasters have made (islandable) microgrids 122 

more popular, especially for critical facilities. The NY REV (New York’s Reforming of the Energy Vision) 123 

Initiative [1] is an example of amplified attention towards microgrids, following big disruptions caused 124 

by the Hurricane Sandy in the US North East. Microgrids provide benefits to the utilities, too, since they 125 

are a much better alternative compared to distributed and uncoordinated deployment of renewable 126 

energy resources.  127 

A microgrid offers a cluster of small sources, storage systems, and loads, within clearly-defined electrical 128 

boundaries, which presents itself to the main grid as a single, flexible, and controllable entity [2]. By 129 

introducing on-site generation, storage, and bidirectional power flow, microgrids can be seen as a 130 

valuable resource to the grid, while also being more independent from it [3]. This flexible resource, if 131 

optimally designed and operated, also provides cost saving benefits to the customers. Microgrids, 132 

however, are complex energy systems that require specific infrastructure, resource coordination, and 133 

information flows [3], and the complexity increases in the presence of technologies that tie together 134 

electrical, heating, and cooling energy flows. Such multi-energy microgrids with combined heat and 135 

power (CHP) and absorption chilling offer better efficiencies and savings through utilization of waste 136 

heat [4],[5]. The high level of complexity and the potential for cost savings, when also factoring in the 137 

high investment cost of microgrids, will help appreciate the challenging problem of microgrid design, 138 

especially for multi-energy microgrids (i.e., microgrids in which electricity, heat, cooling, and fuels 139 

interact with each other, presenting the opportunity to enhance technical, economic and environmental 140 

performance [6]). 141 

Several papers in the literature have reviewed the existing tools and computer models for renewable 142 

energy integration and microgrid planning and design [7-12]. A comprehensive microgrid investment 143 

and planning optimization formulation must address a) power generation mix selection and sizing, b) 144 

resource siting and allocation, and c) operation scheduling [10]. In order to take full advantage of excess 145 

heat it must simultaneously consider electricity, cooling, and heating energy uses in the microgrid. 146 

However, most of the existing formulations focus on individual sub-problems and do not include the 147 

whole set of problems or include them without enough depth. Table 1 provides a summary of the recent 148 

developments in the distributed energy system design approaches and shows the lack of a tool 149 

encompassing all of the aforementioned pieces.  150 
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On one side of the spectrum are formulations that include details of the electrical network and do not 151 

consider the thermal network. Among them are some of the distribution network planning formulations 152 

that consider distributed and renewable energy resources (DER). A review of optimal distributed 153 

renewable generation planning approaches is provided in [13]. These formulations [14-16] share some 154 

of the same characteristics with the microgrid design problem, mainly since they determine the size and 155 

location of DERs to be installed and the optimal dispatch associated with the upgraded network. 156 

However, the generation mix is limited and the focus is only on electrical energy use. Similarly, some 157 

microgrid design formulations [17],[18] only tackle electrical energy, neglecting heating and cooling 158 

energy uses. On the other side of the spectrum, district or neighborhood-level heating design 159 

optimization formulations focus on the thermal energy and its flow in the network, but do not consider 160 

electrical energy use, e.g. [19-21]; or take electrical energy use into account but neglect the electrical 161 

network, e.g. [22-24], weakening the ability to perform DER optimal placement. 162 

References [25-31] feature microgrid design formulations that model (to some extent) both electrical 163 

and thermal networks and present the most relevant work to this paper. Omu et. al. [25] formulated a 164 

mixed integer linear program for optimum technology selection, unit sizing and allocation, and network 165 

design of a distributed energy system that meets the electricity and heating demands of a cluster of 166 

buildings. This work, however, models electrical energy as a commodity whose transfer from one 167 

location to another can be arbitrarily decided, neglecting power flow constraints or Kirchhoff laws. 168 

Similarly, the approaches presented in [26-28] for design and planning of urban and distributed energy 169 

systems do not include power flow equations. Yang et. al. [29] proposed another approach for 170 

integrated design of heating, cooling, and electrical power distribution networks, but did not include 171 

electrical power flow equations.  172 

In another example, Morvaj et. al. [30] developed a mixed integer linear program for the optimal design 173 

of distributed energy systems, in which linearized AC power flow equations and heat transfer equations 174 

were integrated, but cooling energy use was neglected. Similarly, Basu et. al. [31] proposed an approach 175 

to optimally determine the size, location, and type of CHP-based DERs in microgrids, using power loss 176 

sensitivity to guide the optimization in siting the DERs. Although both electrical and heating energy uses 177 

and networks are modeled, cooling is neglected. Also, the formulation is nonlinear and solves using a 178 

stochastic approach. Unlike linear formulations, nonlinear formulations do not efficiently scale and it is 179 

not guaranteed to find the best solution.  180 
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Table 1 Summary of the most relevant formulations in the current literature 181 

 Energy Use Electrical Distribution Network Heat Transfer Network 

Ref. Electricity Heating Cooling 

Capacity 

Constraints 

Voltage Constraints  

(Power Flow Equations) 

Capacity  

Constraints 

[14] ×   × ×  

[15] ×   × ×  

[16] ×   × ×  

[17] ×   × ×  

[18] ×   × ×  

[19]  ×    × 

[20]  ×    × 

[21]  ×    × 

[22] × ×    × 

[23] × ×    × 

[24] × ×    × 

[25] × ×  ×  × 

[26] × ×  ×  × 

[27] × ×  ×  × 

[28] × ×  ×  × 

[29] × × × ×  × 

[30] × ×  × × × 

[31] × ×  × × × 

This Paper × × × × × × 

This paper builds on the existing work in the literature, and formulates the problem of optimal design 182 

(DER sizing, allocation, and operation) of microgrids as a mixed integer linear program. The 183 

contributions of this work are threefold: 184 

 First, we propose an integrated design approach in which electrical, heating, and cooling loads 185 

and sources are modeled, in order to take full advantage of excess heat in the microgrid and 186 

enhance the overall system efficiency.  187 

 Second, our formulation considers the limitations of the electrical and heat transfer networks in 188 

the design and dispatch, allowing for the optimal placement of the DER technologies. To this 189 

end, we integrate a set of linear heat transfer equations that include network losses. We also 190 

integrate a set of linearized AC power flow equations into the problem that model active and 191 

reactive power flow in the network and hence, allows imposing of cable capacity and bus 192 

voltage constraints.  193 

 Third, since minimization of network losses is one of the important factors in optimal 194 

technology placement, we propose a novel approach to integrate a linear approximation of 195 

electrical network active and reactive power losses into the optimization problem.  196 

This paper is organized as follows. Section 3 presents the developed model for the optimal microgrid 197 

design problem and discusses the details of the optimization objective and constraints. Next, an 198 

illustrative case study is presented in section 4 and the results are elaborated. The paper summary and 199 

future work are provided in section 5. 200 
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3 Developed Optimization Model 201 

We present the mathematical formulation for the integrated design of multi-energy microgrids. The 202 

presented model is founded on the existing optimization model in DER-CAM (Distributed Energy 203 

Resources Customer Adoption Model) [32], developed by Lawrence Berkeley National Laboratory. DER-204 

CAM is used extensively to address the problem of optimal investment and dispatch of microgrids under 205 

multiple settings. DER-CAM is one of the few optimization tools of its kind that is available for public use 206 

and stable versions can be accessed freely using a web interface [33]. The key inputs in DER-CAM are 207 

customer loads, utility tariffs, and techno-economic data for DER technologies. Key optimization outputs 208 

include the optimal installed on-site capacity and dispatch of selected technologies, demand response 209 

measures, and energy costs. 210 

The new model proposed in this paper alleviates the need to iterate between a microgrid optimization-211 

based design tool and an electrical power flow tool or a heat transfer modeling tool since it considers 212 

the microgrid’s electrical and thermal networks and their limitations. To enable reasonable and practical 213 

optimization run times, we formulate the problem in the form of a mixed integer linear program. To that 214 

end, component and network models are simplified and linearized. Our previous analysis of the existing 215 

models in DER-CAM [34-36] and our analysis of the new models developed in this paper (presented in 216 

section 4) ensure the adequacy of the models and validate the simplifications.   217 

3.1 Microgrid Model 218 

We consider a general microgrid structure as shown in Figure 1 with electrical and thermal networks. 219 

The electrical network can be either meshed or radial. Similarly, the piping network can have any 220 

arbitrary configuration. The microgrid may or may not have a utility connection. The load at each node is 221 

composed of several end-uses including electricity-only (mainly plug loads), heating (water and space 222 

heating), and cooling loads. The objective is to determine the optimal portfolio, capacity, and placement 223 

of various DER technologies that minimize the overall investment and operation cost of the microgrid, 224 

while taking into account electrical and thermal network losses and constraints, as well as operational 225 

limits of various technologies. 226 

 227 

(N) 

(n) (1) 

Macrogrid (Utility) 

Electrical/Thermal Node 

Electrical Cable Network 

Thermal Pipe Network 
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Figure 1 General microgrid model with electrical (meshed or radial) and thermal (arbitrary configuration) networks, with or 228 
without utility connection  229 

3.2 Continuous vs. Discrete Investment Decision Variables 230 

We model DER capacities for different technologies using a continuous or discrete variable: If a 231 

technology is available in small enough modules and the capital costs can be represented by a linear 232 

cost function, the optimal capacity to be installed is modeled as a continuous variable, significantly 233 

lowering computational time. These technologies are referred to as continuous technologies in this 234 

paper. Examples of continuously modeled DER technologies are PV, battery, and absorption chilling. 235 

Discrete variables are used otherwise. These technologies are referred to as discrete technologies in this 236 

paper. Examples of discrete generation technologies are internal combustion engines and micro-237 

turbines. Each node in Figure 1 can host continuous technologies (for which 𝐶𝑎𝑝n,k is the capacity to be 238 

installed) and discrete technologies (for which 𝑖𝑛𝑣n,g is the number of units to be installed). 239 

3.3 Time Resolution 240 

The total investment and operation costs are minimized over a typical year, where each month is 241 

modeled with up to three representative hourly load profiles of a) week day, b) weekend day, and c) 242 

peak day (outlier). Therefore, a typical year is modeled with 12 × 3 × 24 = 864 time-steps. Due to the 243 

hourly time-step, energy and power are numerically identical. 244 

3.4 Objective Function 245 

The objective is to minimize the overall microgrid investment and operation cost, though it is also 246 

possible to minimize emissions, or a combination of costs and emissions. Equation (1) shows that the 247 

objective function includes: annualized investment costs of discrete and continuous technologies; total 248 

cost of electricity purchase inclusive of carbon taxation; demand charges; electricity export revenues; 249 

generation cost for electrical, heating, or cooling technologies inclusive of their variable maintenance 250 

costs; fixed maintenance cost of discrete and continuous technologies; carbon taxation on local 251 

generation; and load curtailment costs. 252 
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𝐶 = ∑ 𝑖𝑛𝑣n,g ∙ DERP̅̅ ̅̅ ̅̅
g̅ ∙ DERCapg ∙ Anng 

n,g

+ ∑ (CFixk ∙ 𝑝𝑢𝑟n,k + CVark ∙ 𝐶𝑎𝑝n,k) ∙ Annk
n,k

+ ∑ 𝑈𝑡𝑖𝑙𝑃𝑢𝑟n,t(PurRtt + CTax ∙ MkCRtt)
n,t

+ ∑ DmnRtm,p ∙ 𝑀𝑎𝑥𝑃𝑢𝑟n,m,p
n,m,p

− ∑ ExpRtt ∙ 𝑈𝑡𝐸𝑥𝑝n,t
n,t

+ ∑ 𝐺𝑒𝑛n,j,t(DERGnCstj + DERMVrj)
n,j,t

+ ∑ 𝑖𝑛𝑣n,g ∙ DERP̅̅ ̅̅ ̅̅
g̅ ∙ DERMFxg 

n,g
+ ∑ 𝐶𝑎𝑝n,k ∙ DERMFxk

n,k

+ ∑ 𝐺𝑒𝑛n,j,t ∙
1

ηj
∙ GCRt𝑗 ∙ CTax

n,j,t

+ ∑ 𝐿𝑑𝐶𝑢𝑟n,u,t ∙ CurPrn,u
n,u,t

 (1) 

3.5 Electrical Balance 253 

To integrate electrical balance equations for the network, i.e. electrical power flow, an explicit linear 254 

model was adopted [37] that approximates node (bus) voltages in meshed/radial balanced distribution 255 

networks. Equations (4)-(6) show how real and imaginary terms of node voltages are calculated for non-256 

slack and slack buses in the Cartesian coordinates, based on the network impedances and node injection 257 

powers. We assume the microgrid's slack (reference) bus is the last node, i.e. node N, and its voltage is 258 

fixed at V0∠0° as shown in (6). 259 

The net injected power at a node, as shown in (2), takes into account utility import and export at the 260 

node, local generation at the node, load and load curtailment, electric chiller consumption at the node, 261 

and battery charging or discharging. To simplify the formulation presentation, we assume a constant 262 

power factor ϕ for all power injections, as shown in (3). This assumption, however, can be easily 263 

expanded to consider different power factors for various loads and DERs.  264 

Sb ∙ 𝑃𝑔n,t = 𝑈𝑡𝑃𝑢𝑟n,t − 𝑈𝑡𝐸𝑥𝑝n,t

+ ∑ 𝐺𝑒𝑛n,j,t
j∈{PV,ICE,MC,FC}

−(Ldn,u=EL,t − 𝐿𝑑𝐶𝑢𝑟n,u=EL,t) −
1

COPe
∙ 𝐺𝑒𝑛n,c=EC,t

+𝑆𝑂𝑢𝑡n,s=ES,t ∙ SDEffs=ES −
1

SCEffs=ES
∙ 𝑆𝐼𝑛n,S=ES,t

 (2) 

𝑄𝑔n,t = 𝑃𝑔n,t ∙ tan(acosϕ) ;    n ≠ N (3) 

𝑉𝑟n,t = V0 +
1

V0
∑ (Zrn,n′ ∙ 𝑃𝑔n,t + Zin,n′ ∙ 𝑄𝑔n,t)

n′≠N
 ;    n ≠ N (4) 
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𝑉𝑖n,t = V0 +
1

V0
∑ (Zin,n′ ∙ 𝑃𝑔n,t − Zrn,n′ ∙ 𝑄𝑔n,t)

n′≠N
 ;    n ≠ N (5) 

𝑉𝑟n,t = V0 ,   𝑉𝑖n,t = 0 ;    n = N (6) 

The existence of the practical approximate power flow solution in (4)-(6) requires the network to meet 265 

the condition 266 

V0
2 > 4 ∙ ‖𝐙‖∗ ∙ ‖𝒔t‖, 267 

in which 𝐙 is the network Zbus matrix without the slack bus row and column, and 𝒔t is the vector of 268 

apparent power injections for non-slack buses. The standard 2-norm ‖∙‖ for the vector 𝒔t is defined as  269 

‖𝒔t‖ ≜ √∑ |𝑆𝑔n,t|
2

n≠N . 270 

Also, the norm ‖⋅‖∗ for a matrix is defined as the maximum of the 2-norm values of its row vectors [37]. 271 

We refer to this constraint as the “approximate power flow existence condition” in this paper.  272 

In the above condition, V0
2 and ‖𝐙‖∗ are parameters known before solving the optimization (i.e., fixed 273 

parameters). However, ‖𝒔𝑡‖ at any given time t depends on the dispatch, and will not be known until 274 

after solving the optimization. To ensure the validity of the integrated power flow model for a microgrid 275 

under study, we propose two options: The first option is to assume the model is valid and run the 276 

optimization. Then assess the criterion based on the optimization results (post-optimization 277 

assessment). Alternatively, in the second option we will find (in the following paragraph) an upper 278 

bound for the ‖𝒔t‖, which can be used to develop a sufficient condition.  279 

The injection at a bus is limited by the capacity of the lines connected to the bus as shown in (7), setting 280 

an upper bound for the ‖𝒔𝑡‖ as shown in (8). Consequently, the sufficient condition of (9) is obtained 281 

that can be assessed using only the network parameters (which are known before solving the 282 

optimization).  283 

𝑆𝑔n,t = ∑ 𝑆n,n′,t
n′

→ |𝑆𝑔n,t| ≤ ∑ |𝑆n,n′,t|
n′

≤ ∑ S̅n,n′

n′
 (7) 

‖𝒔t‖ ≤ √∑ (∑ S̅n,n′

n′
)

n≠N

2

 (8) 

√∑ (∑ |S̅n,n′|
n′

)
n≠N

2

≤
1

4 ∙ ‖𝐙‖∗
∙ V0

2 (9) 

 284 

One of the important factors that drives the optimal placement of distributed energy resources is the 285 

minimization of network losses. To account for losses in this formulation, we add equation (10) that 286 

ensures total active/reactive power injection (generation minus consumption) equals total 287 
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active/reactive power loss in the system. To calculate network losses in (11)-(12) we use 𝐼𝑟𝑆𝑞n,n′,t and 288 

𝐼𝑖𝑆𝑞n,n′,t that are linear approximations of |𝐼𝑟n,n′,t|
2
 and |𝐼𝑖n,n′,t|

2
, respectively, and will be discussed in 289 

section 3.6. 290 

∑ 𝑃𝑔n,t
n

= 𝑃𝑙𝑜𝑠𝑠t , ∑ 𝑄𝑔n,t
n

= 𝑄𝑙𝑜𝑠𝑠t (10) 

𝑃𝑙𝑜𝑠𝑠t =
1

2
∑ rn,n′ ∙ (|𝐼𝑟n,n′,t|

2
+ |𝐼𝑖n,n′,t|

2
)

n,n′
≈

1

2
∑ rn,n′ ∙ (𝐼𝑟𝑆𝑞n,n′,t + 𝐼𝑖𝑆𝑞n,n′,t)

n,n′
 (11) 

𝑄𝑙𝑜𝑠𝑠t =
1

2
∑ xn,n′ ∙ (|𝐼𝑟n,n′,t|

2
+ |𝐼𝑖n,n′,t|

2
)

n,n′
≈

1

2
∑ xn,n′ ∙ (𝐼𝑟𝑆𝑞n,n′,t + 𝐼𝑖𝑆𝑞n,n′,t)

n,n′
 (12) 

3.6 Cable Current Constraints 291 

To integrate cable current capacity (ampacity) constraints, (13)-(14) calculate the real and imaginary 292 

terms of the current in the Cartesian coordinates. To estimate |𝐼𝑟|2 and |𝐼𝑖|2, the square curve is 293 

piecewise linearized and relaxed as shown in Figure 2. Consequently, 𝐼𝑟𝑆𝑞 and 𝐼𝑖𝑆𝑞 are calculated using 294 

a series of linear inequality equations, as shown in (15)-(18). Equations (15) and (16) are for the positive 295 

and negative values of 𝐼𝑟, respectively. Similarly, (17) and (18) are related to the positive and negative 296 

values of 𝐼𝑖. ΔIr and ΔIi in these equations are calculated in (19). Equation (20) enforces the ampacity 297 

constraint. As mentioned earlier, 𝐼𝑟𝑆𝑞 and 𝐼𝑖𝑆𝑞 are used for loss estimation, too. 298 

𝐼𝑟n,n′,t = −Yrn,n′ ∙ (𝑉𝑟n,t − 𝑉𝑟n′,t) + Yin,n′ ∙ (𝑉𝑖n,t − 𝑉𝑖n′,t) (13) 

𝐼𝑖n,n′,t = −Yin,n′ ∙ (𝑉𝑟n,t − 𝑉𝑟n′,t) − Yrn,n′ ∙ (𝑉𝑖n,t − 𝑉𝑖n′,t) (14) 

𝐼𝑟𝑆𝑞n,n′,t ≥ (v ∙ ΔIr)2 + (2v − 1) ∙ ΔIr ∙ (𝐼𝑟n,n′,v,t − v ∙ ΔIr)  ;     v ∈ {1, … , Nv} (15) 

𝐼𝑟𝑆𝑞n,n′,t ≥ (v ∙ ΔIr)2 − (2v − 1) ∙ ΔIr ∙ (𝐼𝑟n,n′,v,t + v ∙ ΔIr)  ;     v ∈ {1, … , Nv} (16) 

𝐼𝑖𝑆𝑞n,n′,t ≥ (v ∙ ΔIi)2 + (2v − 1) ∙ ΔIi ∙ (𝐼𝑖n,n′,v,t − v ∙ ΔIi)  ;     v ∈ {1, … , Nv} (17) 

𝐼𝑖𝑆𝑞n,n′,t ≥ (v ∙ ΔIi)2 − (2v − 1) ∙ ΔIi ∙ (𝐼𝑖n,n′,v,t + v ∙ ΔIi)  ;     v ∈ {1, … , Nv} (18) 

ΔIr =
Ir̅n,n′

Nv
   ,   ΔIi =

Ii̅n,n′

Nv
 (19) 

𝐼𝑟𝑆𝑞n,n′,t + 𝐼𝑖𝑆𝑞n,n′,t ≤ I̅
n,n′
 2  (20) 

 299 

It is worth noting that this approximation is always more than or equal to the exact square, i.e. 300 

𝐼𝑟𝑆𝑞 ≥ |𝐼𝑟|2 and 𝐼𝑖𝑆𝑞 ≥ |𝐼𝑖|2, making current magnitude and network losses larger than the exact 301 

values, resulting in a conservative solution. 302 
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 303 

Figure 2 Piecewise linear approximation of current magnitude squared  304 

3.7 Bus Voltage Constraints 305 

Bus voltage magnitudes must remain within acceptable minimum and maximum thresholds, V and V, or 306 

equivalently between arcs e and b-c shown in Figure 3. Such constraints, however, will be nonlinear 307 

when voltages are calculated in the Cartesian coordinates. To model these constraints in a linear 308 

approach, we enhanced an approach originally proposed in [38] by replacing the proposed less binding 309 

approximation with a more binding approximation (more conservative). Authors in [38] proposed to 310 

approximate the exact area (defined by edge a, arc b-c, edge d, and arc e) by the polyhedral area a-f-g-d-311 

h, using (21)-(24). In these equations, θ and θ are the minimum and maximum expected angles for bus 312 

voltages. 313 

𝑉𝑖n,t ≤
sinθ̅ − sinθ

cosθ − cosθ
(𝑉𝑟n,t − V ∙ cosθ) + V ∙ sinθ (21) 

𝑉𝑖n,t ≤
sinθ

cosθ − 1
(𝑉𝑟n,t − V) (22) 

𝑉𝑖n,t ≤
−sinθ

cosθ − 1
(𝑉𝑟n,t − V) (23) 

𝑉𝑟n,t ∙ tanθ ≤ 𝑉𝑖n,t ≤ 𝑉𝑟n,t ∙ tanθ (24) 
 314 

This approximation is conservative on the upper bound, and less binding on the lower bound of the 315 

voltage. That is because edges f and g are stricter than arcs b and c, but edge h is relaxer than arc e. 316 

Since under-voltage problems are more common in distribution networks than over-voltage problems, 317 

the less binding constraint on the lower bound may result in microgrid designs and DER placements that 318 

lead to under-voltage problems. In our formulation we alleviated this concern by substituting the less 319 

binding edge h with the more binding edge h’, through replacing V  with V′ = V ∙ sec (
θ−θ

2
), and 320 

rewriting (21) as (25). 321 

slope = (2𝑣 − 1)ΔI 

      0       ΔI    (𝑣 − 1)ΔI     𝑣ΔI     NvΔI       0       ΔI    (𝑣 − 1)ΔI     𝑣ΔI     NvΔI       0       ΔI    (𝑣 − 1)ΔI     𝑣ΔI     NvΔI 

ΔI =
I

Nv
 

𝐼𝑟+     𝐼𝑟𝑆𝑞      𝐼𝑟𝑣1      𝐼𝑟𝑣𝑣  

𝐼𝑟+     𝐼𝑟𝑆𝑞      𝐼𝑟𝑣1      𝐼𝑟𝑣𝑣  

      0       ΔI    (𝑣 − 1)ΔI     𝑣ΔI     NvΔI       0       ΔI    (𝑣 − 1)ΔI     𝑣ΔI     NvΔI       0       ΔI    (𝑣 − 1)ΔI     𝑣ΔI     NvΔI       0       ΔI    (𝑣 − 1)ΔI     𝑣ΔI     NvΔI 

slope = (2𝑣 − 1)ΔI slope = (2𝑣 − 1)ΔI       0       ΔI    (𝑣 − 1)ΔI     𝑣ΔI     NvΔI 
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𝑉𝑖n,t ≤
sinθ̅ − sinθ

cosθ − cosθ
(𝑉𝑟n,t − V ∙ sec (

θ − θ

2
) ∙ cosθ) + V ∙ sec (

θ − θ

2
) ∙ sinθ (25) 

 322 

 323 

Figure 3 Conservative linear approximation of bus voltage magnitude constraints  324 

3.8 Heating Balance 325 

Equation (26) shows the heat balance at each node, accounting for heating loads and resources, heating 326 

needs of absorption chilling (
1

COPa
∙ 𝐺𝑒𝑛n,j=AC,t), heat recovered from CHP units, charging/discharging of 327 

heat storage technologies, and heat transfer between nodes (with linear approximation of network 328 

losses [28]) through the piping network. Equation (27) enforces the pipe capacities. 329 

Ldn,u=HT,t − 𝐿𝑑𝐶𝑢𝑟n,u=HT,t

+ (1 COPa⁄ ) ∙ 𝐺𝑒𝑛n,j=AC,t = ∑ 𝐺𝑒𝑛n,j,t
j∈{ST,BL}

+ ∑ αg ∙ 𝐺𝑒𝑛n,g,t
g∈{ICE,MT}

−
1

SCEffs=HS
∙ 𝑆𝐼𝑛n,s=HS,t + SDEffs=HS ∙ 𝑆𝑂𝑢𝑡n,s=HS,t

− ∑ 𝐻𝑡𝑇𝑟n,n′,t
n′

+ ∑ (1 − γn,n′) ∙ 𝐻𝑡𝑇𝑟n′,n,t
n′

 (26) 

0 ≤ 𝐻𝑡𝑇𝑟n,n′,t ≤ HtTr̅̅ ̅̅ ̅̅
n,n′ (27) 

3.9 Cooling Balance 330 

Equation (28) shows that the cooling load at each node can be met by a combination of electric and 331 

absorption chilling and energy from cold storage technology.  332 

V∠θ     V∠θ      V∠θ      V∠θ 

V∠θ     V∠θ      V∠θ      V∠θ 

V∠θ     V∠θ      V∠θ      V∠θ 

V∠θ     V∠θ      V∠θ      V∠θ 

V′∠θ     V′∠θ      V∠θ      V∠θ 

V′∠θ     V′∠θ      V∠θ      V∠θ 

𝑉𝑟     𝑉𝑖 

𝑉𝑟     𝑉𝑖 

a 

b 

c 
d 

e 

h 

h' 

f 

g 
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Ldn,u=CL,t − 𝐿𝑑𝐶𝑢𝑟n,u=CL,t = ∑ 𝐺𝑒𝑛n,c,t
c∈{AC,EC}

+SDEffs=CS ∙ 𝑆𝑂𝑢𝑡n,s=CS,t −
1

SCEffs=CS
∙ 𝑆𝐼𝑛n,s=CS,t

 (28) 

3.10 Storage Constraints 333 

Equation (29) tracks the state of charge (SOC) for electrical, heat, and cold storage technologies, and 334 

considers self-discharge. Equation (30) keeps the SOC within its limits and (31) sets rate limits on 335 

charging and discharging. 336 

𝑆𝑂𝐶n,s,t = (1 − ϕ𝑠) ∙ 𝑆𝑂𝐶n,s,t−1 + 𝑆𝐼𝑛n,s,t − 𝑆𝑂𝑢𝑡n,s,t (29) 

SOCs ≤ 𝑆𝑂𝑢𝑡n,s,t ≤ SOCs (30) 

𝑆𝐼𝑛n,s,t ≤ 𝐶𝑎𝑝n,s ∙ SCRts ,   𝑆𝑂𝑢𝑡n,s,t ≤ 𝐶𝑎𝑝n,s ∙ SDRts (31) 

3.11 Generation Constraints 337 

Equations (32)-(34) ensure that the dispatch of each technology does not exceed its maximum capacity 338 

or potential. Equation (32) limits the generation of PV and solar-thermal technologies at each time 339 

based on the available solar energy at the time. Equations (33)-(35) relate the operating power and 340 

capacity for continuous and discrete technologies. The M in (34) denotes a very large number. 341 

𝐺𝑒𝑛n,c,t ≤ 𝐶𝑎𝑝n,c ∙
SolEffc,t

ScPkEffc
∙ Solart ;    c ∈ {PV, ST} (32) 

𝐺𝑒𝑛n,g,t ≤ 𝑖𝑛𝑣n,g ∙ DERP̅̅ ̅̅ ̅̅
g̅ (33) 

𝐶𝑎𝑝n,k ≤ 𝑝𝑢𝑟n,k ∙ M (34) 

𝐺𝑒𝑛n,c,t ≤ 𝐶𝑎𝑝n,c (35) 

3.12 Import and Export Constraints 342 

Equations (36)-(38) prevent simultaneous import and export to/from the grid and also set the maximum 343 

allowable export. Note that if a grid connection does not exist, i.e. parameter grd = 0, both 𝑈𝑡𝑃𝑢𝑟𝑛,𝑡 344 

and 𝑈𝑡𝐸𝑥𝑝𝑛,𝑡 will be fixed at zero.  345 

𝑈𝑡𝑃𝑢𝑟n,t ≤ 𝑝𝑠𝑏n,t ∙ grd ∙ M ;    n = N (36) 

𝑈𝑡𝐸𝑥𝑝n,t ≤ (1 − 𝑝𝑠𝑏n,t) ∙ grd ∙ UtExp ;    n = N (37) 

𝑈𝑡𝑃𝑢𝑟n,t = 0 ,   𝑈𝑡𝐸𝑥𝑝n,t = 0 ;    n ≠ N (38) 
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4 Case Study 346 

4.1 Case Setup and Input Data 347 

The arbitrary 12 kV microgrid shown in Figure 4 was used as an example. This microgrid is composed of 348 

5 nodes and 4 buildings. Typical building load profiles were generated based on commercial building 349 

databases [39] with annual electrical, heating, and cooling loads listed in Table 2.  For the electrical 350 

network, a cable with an impedance of (64 + 𝑖1.4) × 10−6 pu/m and ampacity of 0.4 pu was arbitrarily 351 

considered. For the heating network, pipes with thermal loss coefficient of γ = 4 × 10−5 %/m and 352 

capacity of 3000 kW-th were considered. Investments in PV, battery, CHP-enabled Internal Combustion 353 

Engine (ICE), absorption chiller, gas-fired boiler, and electric chiller were allowed (characteristics in Table 354 

3 and Table 4). 355 

 356 

Figure 4 Electrical and thermal networks for the example 5-node microgrid 357 

Table 2 Building annual electrical, cooling, and heating loads 358 

 
Annual Electrical Load Annual Cooling Load Annual Heating Load 

Node 
Energy  
(MWh) 

Max Power 
(kW) 

Energy  
(MWh th) 

Max Power 
(kW th) 

Energy  
(MWh th) 

Max Power 
(kW th) 

1 1,467  424   450   1,242  1,160  3,282  

2 3,181  636   3,204   1,710  4,014  1,196  

3 4,059  939   29,295   4,865  10,897  3,379  

4 3,341  1,012   4,631   2,403  1,459  4,779  

Aggregate 12,048  2,318   37,575   9,743  17,530  12,079  

Table 3 Discrete technology option characteristics 359 

 
Capacity Lifetime Capital Cost Efficiency Heat Recovery 

 
(kW) (years) ($/kW) (%) (kW/kW) 

ICE-1 1,000 20 4,969 0.368 1.019 

ICE-2 2,500 20 4,223 0.404 0.786 

ICE-3 5,000 20 3,074 0.416 0.797 

(5) 

(1) 

(4) (2) (3) 

1200m 

1200m 

1800m 

1800m 

900m 

900m 

1
2

0
0

m
 

1
8

0
0

m
 

Large Office Large Hotel Small Hotel 

Small Office 

Macrogrid (Utility) Electrical/Thermal Node 

Electrical Cable Network 

Thermal Pipe Network 
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Table 4 Continuous technology option characteristics 360 

 
Fixed Cost Variable Cost Lifetime 

Technology ($) ($/kW or $/kWh) (years) 

Battery 500 500 5 

PV 2,500 2,500 30 

Gas Boiler 6,000 45 10 

Electric Chiller 2,300 230 10 

Absorption Chiller 250 250 20 
 361 

Two cases were studied: 362 

 Case I (single-node): Building loads were aggregated and electrical and thermal networks were 363 

not considered, resulting in a single-node aggregate approach. The DER portfolio and sizes (at 364 

the microgrid level) were obtained using the aggregate approach.  365 

 Case II (multi-node): The multi-node optimization formulation presented in the paper was used 366 

and the electrical and thermal networks introduced above were considered. The optimal 367 

technology portfolio, DER places, and DER sizes were determined.  368 

The results of the two case studies are used to explore how investment options can be different 369 

between single-node and multi-node modeling for the same design problem, and hence, demonstrate 370 

the importance of the multi-node modeling (with the ability for optimal DER placement) for multi-371 

energy microgrids. To achieve reliable solutions, the optimization precision (stopping criterion) was set 372 

to 0.05% in these studies. 373 

4.2 Optimal Technology Portfolio and Placement 374 

The case study results are reported in Figure 5, Table 5, and Table 6. Figure 5 shows the optimal capacity 375 

and placement of various technologies. For each of the two cases, Figure 5 shows the optimal DER and 376 

HVAC technology portfolio and capacities. In the single-node approach in case I, technology capacities 377 

for nodes 1-5 are not applicable and only the aggregate capacities are relevant. On the contrary in the 378 

multi-node study of case II, technology capacities are optimally determined for each node (building). In 379 

case II, the solution does not include any investment in node 5, and hence, node 5 is not shown in this 380 

figure. The percentages shown on the bars compare the summation of nodal capacities in case II with 381 

the aggregate capacity in case I. As an example, it can be seen that a 1,330 kW absorption chiller is 382 

installed in case I for the microgrid. In case II, four absorption chillers with 262, 246, 457, and 497 kW 383 

capacities are installed at nodes 1-4, respectively. These numbers add up to a total of 1,462 kW, which is 384 

10% more than the 1,330 kW capacity from case I.  385 

Table 5 shows the annual investment and operation costs for the two cases, where total annual cost is 386 

the optimization objective. The percentages for case II costs refer to case I. Table 6 shows the capacity 387 

factor for the operation of various technologies in case I and case II. The capacity factors are used to 388 

draw some conclusions in the following paragraphs.  389 
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 390 

Figure 5 Case study results – optimal technology portfolio, placement, and sizes 391 

Table 5 Case study results – annual investment and operation costs 392 

Case No Annualized Investment Cost (k$) Annual Operation Cost (k$) Total Annual Cost (k$) 

Case I (Single-node) 1,055 1,561 2,616  

Case II (Multi-node) 1,182 (+12.1%) 1,572 (+0.6%) 2,754 (+5.3%) 
 393 
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Table 6 Case study results – operation capacity factors for various technologies 394 

 
Case I (Single-node)  Case II (Multi-node) 

Technology Aggregate  Node 1 Node 2 Node 3 Node 4 Aggregate 

CHP  74.5%  - - 73.2% - 73.2% 

Absorption Chiller  11.9%  2.6% 10.2% 4.9% 8.9% 6.7% 

Electric Chiller  53.5%  16.9% 36.4% 70.0% 20.0% 54.2% 

Gas Boiler  14.9%  4.3% 34.1% - 10.2% 11.6% 
 395 

By comparing case I and II, we can make several observations: 396 

 Not only the aggregate technology capacities are different between the two cases, the 397 

technology portfolio is also not the same, as the portfolio in case II (multi-node modeling) 398 

includes a battery and the portfolio in case I (single-node modeling) does not. This makes the 399 

case for the importance of the proposed multi-node modeling approach as opposed to 400 

commonly used single-node aggregate approaches.  401 

 In both cases a 2,500 kW CHP unit is installed and the aggregate boiler capacity remains almost 402 

constant from case I to case II. However, the aggregate capacity of PV, battery, absorption 403 

chiller, and electric chiller increases from case I to case II.  404 

 Although the CHP capacity is the same between the two cases, network constraints in case II 405 

limit the generation of the CHP unit. As a consequence, the capacity factor of the CHP unit drops 406 

from 74.5% in case I to 73.2% in case II.  407 

 In case II with the optimal DER placement capability, the CHP unit is installed at node 3 (large 408 

hotel), which has the highest electrical/cooling/heating load among the four buildings.  409 

 Although there is no battery in case I, a 672 kWh battery is installed at node 4 in case II. After 410 

node 3 (in which the CHP unit is installed), node 4 has the highest electrical load among the four 411 

buildings. In this example, the battery is typically used during morning and afternoon peaks to 412 

reduce electricity purchase from the utility during these hours (it will be shown in section 4.3).  413 

 The absorption cooling becomes less attractive in case II, where network constraints are 414 

considered. Instead, the amount of electric cooling increases, followed by a higher overall 415 

installed electric chiller capacity in case II. It is worth noting that although the total amount of 416 

cooling met by absorption decreases in case II, the installed capacity for absorption chillers 417 

increases. This seemingly contradicting result is a reflection of the load aggregation used in case 418 

I. Namely, the absorption cooler in the single-node formulation is sized based on the maximum 419 

overall (aggregated) absorption cooling load (in kW), which is not necessarily the same as 420 

individually sizing absorption chillers based on the loads in each of the nodes. Hence, the total 421 

absorption chiller size of all 4 nodes in case II exceeds the installed capacity in case I, even 422 

though the effective amount of cooling met through absorption chillers is lower. This is 423 

confirmed by analyzing the capacity factor for the absorption coolers in the system, which 424 

decreases from 11.9% in case I to 6.7% in case II.   425 

 As a result of the lower use of absorption chillers, the total heating load, which includes heat 426 

used to drive these chillers, is smaller in case II than in case I. However, the same observation is 427 

made regarding total installed capacity, as the boiler at each node is sized based on the 428 
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maximum heating load at that node, and this results in a total capacity which exceeds the 429 

maximum of the aggregate load in the single-node formulation, even though the boilers are 430 

used less often. Once again, this is confirmed by analyzing the aggregate capacity factor of 431 

boilers, which decreases from 14.9% in case I to 11.6% in case II.   432 

 The investment cost in case II is 12.1% higher due to installing more DERs in the microgrid.  433 

 The 0.6% increase in the annual operation cost is the aggregate outcome of several conflicting 434 

changes from case I to case II, including more electricity purchase from the utility, more onsite 435 

PV generation, and less fuel consumption. Also in contrast with case I, the network electrical and 436 

thermal losses are modeled in case II.  437 

 The total annual investment and operation cost in this example increases by 5.3% when 438 

electrical and thermal network constraints are taken into account. It indicates that single-node 439 

aggregate approaches may under-estimate investment capacities and annual costs. We have 440 

conducted further studies that showed the under-estimation gap increases as the network 441 

weakens (higher line impedances and lower line ampacities). Another problem with aggregate 442 

approaches, as discussed earlier in the paper, is that they are inherently unable to perform 443 

optimal DER placement.  444 

4.3 Optimal Electrical, Cooling, and Heating Dispatch 445 

Figure 6 shows the optimal electrical dispatch for nodes 1-5 in case II during a typical week day in August 446 

(month and day-type arbitrarily chosen). For each node the demand is composed of the node electrical 447 

load, consumption of the electric chiller at the node, and the electrical power being exported to other 448 

nodes. The supply includes PV generation at the node, ICE generation at the node, discharge of the 449 

battery at the node, electricity purchased from the grid at the node, and electrical power being 450 

imported from other nodes. In node 4 when the supply exceeds the demand, excess energy is stored in 451 

the battery. The battery state of charge can be seen on the second axis.  452 

Node 5 is the point of common coupling to the utility grid and does not have any loads. It can be 453 

observed that the microgrid only purchases electricity from the grid during morning and afternoon load 454 

peaks, i.e. 7-10am and 7-9pm. It can also be observed that the electricity purchase from the grid has an 455 

almost flat profile during these hours in order to minimize incurred demand charges. As explained in 456 

section 3.5, an approximation of the entire microgrid power loss is modeled at the slack bus in our 457 

formulation (bus 5 in this example). The excess supply power seen in this node is to compensate 458 

network losses. 459 

It can be observed that the CHP unit in node 3 runs continuously and exports its excess power to other 460 

nodes. Nodes 1, 2, and 4 are importer nodes and never have extra supply to export. The dispatch at 461 

node 4 shows that the battery is used during morning and afternoon load peak hours. The battery helps 462 

to reduce electricity purchase from the grid and also to keep a flat purchase profile during these hours.  463 

Figure 7 shows the optimal heating dispatch for nodes 1-4 in case II for the same month and day-type. 464 

Node 5 is not shown since it does not have any heating loads or resources. The demand at each node is 465 

composed of water/space heating load, heating load of absorption cooling, and heat export to other 466 

nodes. The node supply entails heat provided by the boiler at the node, heat recovered from CHP at the 467 
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node, and imported heat from other microgrid nodes. It can be observed that node 3 is a heat exporter 468 

node and transfers its excess recovered heat to other nodes. Nodes 1 and 2 are heat importers and use 469 

the imported heat along with their boilers to meet their demands. Node 4 imports heat from node 3 470 

from 9am to 5pm and exports to node 3 before 9am and after 5pm. 471 

Figure 8 shows the optimal cooling dispatch for nodes 1-4 in case II for the same month and day-type. It 472 

can be seen that the cooling load at each node is met by a combination of electric and absorption 473 

cooling at the node. Since node 3 has a CHP unit, one may expect the cooling load in this node to be met 474 

mostly by absorption cooling. However, the dispatch in this figure shows that this node has the lowest 475 

absorption to electric cooling ratio among the four nodes. That is because the electrical network 476 

capacity is fairly limited, while the piping network has a high capacity. As a result, the electrical 477 

generation of the CHP unit is used locally to supply the electrical loads (including electric chiller) and 478 

most of the recovered heat is exported to other nodes for their heating and absorption cooling loads. 479 

Figure 9 shows the optimal electrical, heating, and cooling dispatch for the microgrid in case I for the 480 

same month and day-type, i.e. a typical weekday in August. The aggregate modeling is not able to 481 

capture the microgrid’s internal energy transfer. It is also unable to determine the dispatch at the node 482 

level. To further demonstrate the optimal dispatch differences between single-node and multi-node 483 

modeling, Figure 10 compares the (aggregate) optimal dispatch between case I (single node) and case II 484 

(multi-node). In case I, system loads are met by PV and CHP technologies. On the contrary in case II 485 

loads are served by PV, CHP, utility electricity, and battery. It can be observed that the electric chiller 486 

loads are also different between the two cases, which is because of the different absorption and electric 487 

chiller sizes.  488 

489 
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 494 

Figure 6 Case study results – optimal electricity dispatch in case II (a typical weekday in August)  495 
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Figure 7 Case study results – optimal heating dispatch in case II (a typical weekday in August)  500 
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 504 

Figure 8 Case study results – optimal cooling dispatch in case II (a typical weekday in August) 505 
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 507 

 508 

Figure 9 Case study results – optimal electricity, heating, and cooling dispatch in case I (a typical weekday in August)  509 
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 510 

 511 

Figure 10 Case study results – comparison of aggregate electricity dispatch between case I and II (a typical weekday in August) 512 

4.4 Accuracy of the Approximate Power Flow Solution 513 

In our formulation, a linear approximation of power flow equations is used. Figure 11 shows the 514 

histogram and cumulative distribution function (CDF) for the errors in bus voltage magnitudes in case II. 515 

To generate this plot, the exact power flow solution (Newton-Raphson method) was calculated for the 516 

network at each time step using the optimal dispatch (output from the optimization), and the exact 517 

power flow solution was compared with the approximation (from within the optimization) for all the 518 

data points. It can be observed that the errors are very small and 97% of the voltage data points have an 519 

error less than 0.25%. Figure 12 shows the voltage variation (over a year) at each node for both exact 520 

and approximate power flow solutions. It can be observed that the ranges are very close. Also, the 521 

voltage never drops below the minimum acceptable threshold of 0.9pu. 522 
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 523 

Figure 11 Case study results – accuracy of the approximate power flow solution  524 

 525 

Figure 12 Case study results – voltage magnitude variations at each node  526 

4.5 Verification of the “Approximate Power Flow Existence Condition” 527 

As discussed in section 3.5, the network needs to meet the “approximate power flow existence 528 

condition” for the power flow equations to be valid. It was explained that this condition can be verified 529 

using two methods:  530 

 Method one, post-optimization: The ‖𝒔t‖ calculated from the optimization results ranges 531 

between 0.32506 and 1.4087. All of the ‖𝒔t‖ in this range satisfy the “approximate power flow 532 

existence conation”. 533 

 Method two, pre-optimization: For the example microgrid, the sufficient condition of (9) for the 534 

pre-optimization verification of the power flow model holds true, since 535 

√∑ (∑ S̅n,n′
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)

2
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1
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5 Conclusions and Future Work 536 

This paper presented a mixed-integer linear programming model for optimal microgrid design, including 537 

optimal technology portfolio, placement, and dispatch, for multi-energy microgrids, i.e. microgrids with 538 

electricity, heating, and cooling loads and resources. To optimally place DERs in the microgrid, our 539 

optimization formulation includes integer linear models for electricity and heat transfer networks, as 540 

well as their physical and operational constraints.  541 

To illustrate how the developed optimization model works, we conducted a case study in which we 542 

solved the optimal microgrid design problem for an example microgrid using both a single-node 543 

aggregate approach (and hence without DER placement) and our proposed multi-node approach (with 544 

DER placement). The results indicated that aggregate approaches are inherently incapable of DER 545 

placement in the microgrid. Moreover, they may result in non-optimal technology portfolio and 546 

underestimation of DER capacities, since they cannot capture the internal energy transfer within the 547 

microgrid and the limitations of the electrical/thermal networks. For the example microgrid studied, we 548 

also compared our approximate power flow solution with the exact power flow solution and observed 549 

very small errors in bus voltage magnitudes.  550 

Further research work will focus on modeling of larger microgrids with more nodes and studying its 551 

impact on the solution time. Integrating alternative linear power flow models will also be pursued. 552 

Furthermore, research will be carried out on the inclusion of network design (cable connections and 553 

types), as well as N-1 security constraints, and evaluating their impact on the technology portfolio and 554 

investment cost. 555 
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