Computed axial lithography for volumetric additive manufacturing with photopolymers

Computed axial lithography for volumetric additive manufacturing with photopolymers

Seminar Abstract 

Volumetric additive manufacturing is defined as producing the entire volume of a component or structure simultaneously — rather than by layering — and has been envisioned as a possible way to increase the speed of polymeric additive manufacturing. Until recently, however, no practicable technique existed for creating arbitrary 3D geometries volumetrically. Recently, my group has demonstrated Computed Axial Lithography (CAL), in collaboration with colleagues at Lawrence Livermore National Lab, to meet this need (Kelly et al., Science, 2019, DOI: 10.1126/science.aau7114). CAL essentially reverses the principles of computed tomography (widely used in imaging, but not previously in fabrication) to synthesize a three-dimensionally controlled illumination dose within a volume of photocurable resin. The photosensitive volume rotates steadily while a video projector illuminates the material from a direction perpendicular to the axis of rotation. The illumination pattern typically changes >1000 times per revolution, so that light from many different projection angles contributes to the cumulative dose. Where the dose exceeds a threshold, the resin solidifies and the part is formed.

 

Seminar Speaker(s) 

Hayden Taylor
Assistant Professor of Mechanical Engineering , University of California, Berkeley

Hayden Taylor is an Assistant Professor of Mechanical Engineering at the University of California, Berkeley. He holds B.A. and M.Eng. degrees in Electrical and Electronic Engineering from Cambridge University and a Ph.D. in Electrical Engineering and Computer Science from MIT. His research spans the invention, modeling and simulation of manufacturing processes. His group is particularly focused on processes that can be used to fabricate extremely rich and complex, multi-scale geometries, such as are found in semiconductor integrated circuits and biological tissues. Past work has addressed plasma etch, polymer bonding, chemical mechanical polishing, and mechanical exfoliation of van der Waals-bonded solids. He has particular expertise in mechanical lithography processes including micro-embossing and nanoimprint lithography. Current research activities have the following themes: (A) contact mechanics in materials processing, (B) surface engineering for heat and mass transfer, and (C) multi-scale additive manufacturing, including computed axial lithography. 

Date 

Jan 17, 2020 -
12:00pm to 1:00pm

Location 

90-3122

Host